

Digitalization is changing everythingwe address Digitalization with a holistic approach

Value creation processes

Smart factory, smart plant, smart buildings

Digitally enhanced products

Smart products and solutions

Business models Smart services

Holistic IT security concept

Innovation with a clear focus -**Siemens Company Core Technologies**

Additive Manufacturing	Autonomous Robotics	Blockchain Applications	Connected (e)Mobility	Connectivity and Edge Devices
Cybersecurity	Data Analytics, Artificial Intelligence	Distributed Energy Systems	Energy Storage	Future of Automation
Materials	Power Electronics	Simulation and Digital Twin	Software Systems and Processes	

Company Core Technologies to drive Innovation in Digitalization

SIEMENS Ingenuity for life

Cyber Security

Enabling Digitalization

Cyber Security is a key enabler to Digitalization

Unrestricted © Siemens AG 2018

Cybersecurity – An increasingly critical factor for the success of the digital economy

2010s 1950s - 1960s 1980s 1999 2020s Computers make their The globe is connected Cloud computing Internet of Things, Smart Military, governments and enters the mainstream way into schools, homes, and autonomous systems, other organizations implement by the internet computer systems business and industry Artificial Intelligence, Big Data **Digital Connectivity Digital Automation and Intelligence Digital Information Processing** 1970s 1990s 1991 2000s 2020s Digital enhancement The World Wide Mobile flexibility Industry 4.0 Home computer is introduced of electrification and Web becomes automation publicly accessible Industroyer/Chrashoverride Heartbleed WannaCrv Melissa Worm Stuxnet Morris Worm **ILOVEYOU** AT&T Hack Blue Boxing **AOHell** NotPetya Cryptovirology Cloudbleed

Level Seven Crew hack

Denial-of-service attacks

sl1nk SCADA hacks

Infinion/TPM

Meltdown/Spectre

The challenges to Cyber Security require new approaches to technologies

Digitalization

Connected Industrial Control Systems offer new levels of efficiency and productivity ...

but they also create new possibilities to cyber attacks

Business Units

Cyber Security technology to use for my future products/solutions?

How to secure existing installations?

How to securely connect to the cloud for digital services?

How to scale effort in CyberSecurity?

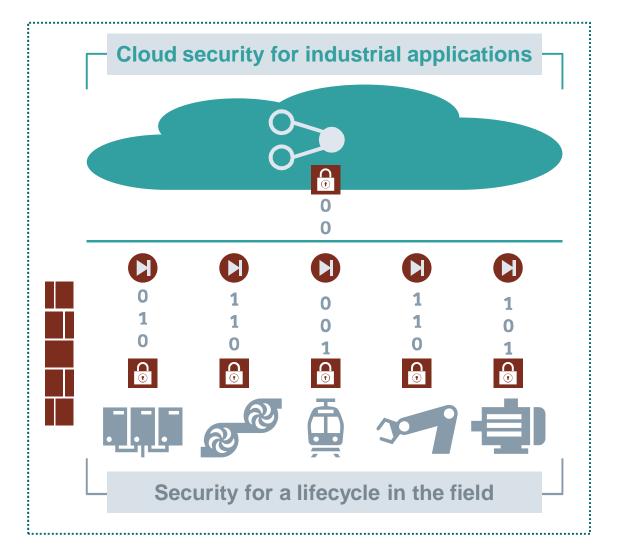
What is the technology to drive security services business?

Standards and regulations

e.g. IEC 62443 Security Levels

- Protection against casual or coincidental violation
- Protection against intentional violation using simple means, low resources, generic skills, low motivation
- Protection against intentional violation using sophisticated means, moderate resources, ICS specific skills, moderate motivation
 - Protection against intentional violation using sophisticated means, extended resources, ICS specific skills, high motivation

Need for Cyber Security Technology


ICS: Industrial Control System | IEC: International Electrotechnical Commission

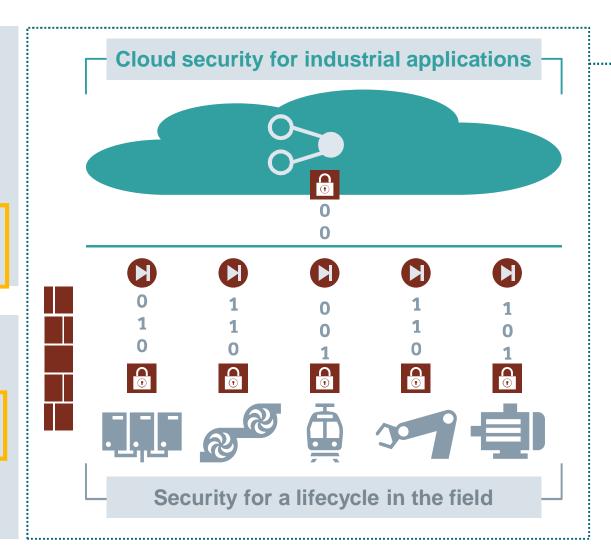
Scoping of CCT Cyber Security – Five action fields derived from business needs

Cyber Security Action Fields

Internal Products & Security Cyber Solutions Customer Security Security Services **Technologies** for Security Services Long term Security for Life Cycle (Brownfield) Security **Automation** Cloud Security for **Industrial Applications** Reusable Cyber Security Components

Cyber Security

Protecting industrial infrastructure along their entire lifecycle



Security Components, e.g.

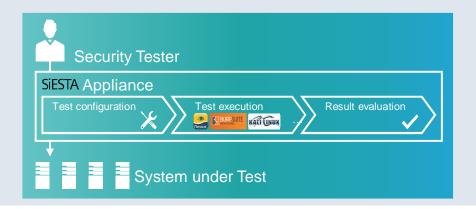
- One-way gateway
- IoT public key infrastructure, identity and access management
- Small footprint IoT cryptography

Security automation in R&D, e.g.

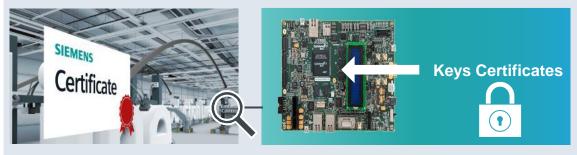
- Automated penetration testing
- Automated hardening and secure configuration

Technologies for security services in operations, e.g.

- Security analytics platform
- Artificial intelligence for security
- Automatic response malware containment


Unrestricted © Siemens AG 2018

Automated penetration testing and small footprint crypto enabled PKI


Automated Penetration Testing

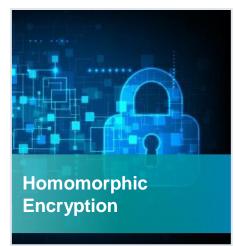
- Accelerates and improves SW development
- Uses state-of-the-art security scanners and automatically updates with new attack patterns out of a central database
- Extended with automated hardening and support security standard for industrial control systems (IEC 62443)

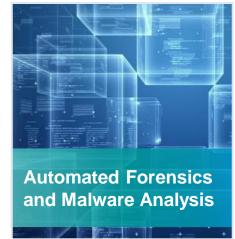
Trust anchor and small footprint cryptography

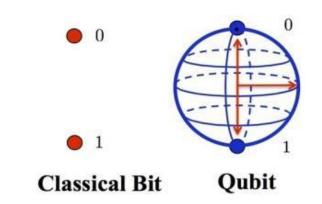
- Central PKI service in secure environment
- Central signature service
- Secure key generation and storage using small footprint Elliptic Curve Cryptography
- Support of various platforms: crypto controller, FPGA,
 Software
- Tool kit for easy integration into products

PKI = Public Key Infrastructure; **HW** = Hardware; **SW** = Software; **FW** = Firmware

Cyber Security – long term research topics







Post Quantum Crypto – Siemens products need to be protected from Quantum Computer attacks

Challenges

- Quantum Computers are able to break classical public key crypto (e.g. RSA) used for key distribution and signatures
- Current used hash functions (e.g. SHA family) and symmetric algorithms (e.g. AES encryption) are resistant against QC attacks
- Estimation: >1,000,000 qubits required to break current public keys, needing ~8 – 30 years of technology progress
- IBM: 50 qubits (2017), Google announced 72 qubits for 2018

Effects on Siemens

- Public key crypto has advantages (e.g. key negotiation, digital signatures) and is therefore used in many Siermens products
- Industrial products life-cycle is 20+ years P might become vulnerable to future QC attacks

Research Priorities

- Upcoming quantum secure crypto algorithms for usage within critical infrastructure, e.g. memory, realtime
- Design for crypto agility: ability to upgrade to crypto algorithms

QC: Quantum Computer | RSA: Rivest-Shamir-Adleman algorithm | SHA: Secure Hash Algorithm | AES: Advanced Encryption Standard

Cyber Security – Technology to secure Siemens

Cyber Security Action Fields

Internal Cyber Security

Products & Solutions Security

Security Services

Technology for Security Services

Long term Security for Life Cycle (Brownfield)

Security Automation

Cloud Security for Industrial Applications

Reusable Cyber Security Components

... protect our customers infrastructure

... automate and scale solutions to systematically address Cyber Security needs

... provide innovative and future-proof technology

Questions & Answers

Unrestricted © Siemens AG 2018

siemens.com/innovation