
Practical Verification for
Software Engineers

Alexander Senier
CODE, 2020-11-11

22020-11-11

Software Security
Security Vulnerabilities

■ CVE-1999-0015 – 5.0 MEDIUM – HP-UX,
Windows, NetBSD, SunOS

▪ “Teardrop”

■ CVE-2014-0160 – 7.5 HIGH – OpenSSL

▪ “Heartbleed”: Improper Restriction of
Operations within the Bounds of a
Memory Buffer (CWE-119)

■ CVE-2017-0144 – 8.1 HIGH – Windows

▪ “EternalBlue”: Improper Input Validation
(CWE-20)

■ CVE-2017-0785 – 6.5 MEDIUM – Android

▪ “BlueBorne”: Information Exposure
(CWE-200)

■ CVE-2017-14315 – 7.5 HIGH – iOS

▪ “BlueBorne”: Improper Restriction of
Operations within the Bounds of a
Memory Buffer (CWE-119)

■ CVE-2018-10933 – 9.1 CRITICAL – libssh

▪ Improper Authentication (CWE-287)

■ CVE-2019-3560 – 7.5 HIGH – Fizz

▪ Loop with Unreachable Exit Condition
(CWE-835)

■ CVE-2019-11477 – 7.5 HIGH – Linux

▪ Integer Overflow or Wraparound
(CWE-190)

32020-11-11

Software Security
Integer Overflow in Fizz

■ Fizz ¹

▪ TLS 1.3 implementation by Facebook in C++

■ Vulnerability ²

▪ Infinite loop triggered by unauthenticated remote attacker (denial of service)

1) https://github.com/facebookincubator/fizz 2) https://securitylab.github.com/research/facebook-fizz-CVE-2019-3560

https://github.com/facebookincubator/fizz
https://securitylab.github.com/research/facebook-fizz-CVE-2019-3560

42020-11-11

Software Security
How to prevent such bugs?

■ Software Quality Assurance

▪ Code Reviews

▪ Testing

▪ Fuzzing

■ Static Code Analysis

▪ Variant Analysis

▪ Formal Verification

 ⇨ Applied by Facebook

 ⇨ Applied by Semmle (acquired by GitHub) using CodeQL

52020-11-11

Formal Verification
SPARK

https://www.adacore.com/about-spark

https://www.adacore.com/about-spark

62020-11-11

SPARK
Assurance Levels

https://www.adacore.com/about-spark

Gold

Silver

Bronze

Stone

Eff
or

t &
 S

ki
ll

Safer, analyzable language subset

functional requirements

Key integrity properties

Runtime errors

Flow constraints

Full
Platinum

https://www.adacore.com/about-spark

72020-11-11

SPARK
Guarantees and Limitations

■ Guarantees

▪ Formal verification gives
guarantees that traditional
software quality assurance
cannot provide

▪ Systems are secure and safe in
all known potentially problematic
situations

■ Limitations

▪ Every proof (and in fact every
software) has assumptions

▪ Proving higher-level properties is
harder

▪ Limited support for dynamic
systems

https://www.adacore.com/about-spark

https://www.adacore.com/about-spark

82020-11-11

SPARK
Example: Integer Overflow in Fizz

...
12 declare
13 Length : UInt16 := Read_UInt16 (Cursor);
14 begin
15 Length := Length + 5;
16 Trim_Start (Buf, Length);
...

 type UInt16 is range 0 .. 2**16 – 1;

92020-11-11

SPARK
Example: Integer Overflow in Fizz

...
12 declare
13 Length : UInt16 := Read_UInt16 (Cursor);
14 begin
15 Length := Length + 5;
16 Trim_Start (Buf, Length);
...

Phase 1 of 2: generation of Global contracts ...
Phase 2 of 2: flow analysis and proof ...
plaintext_record_layer.adb:15:30: medium: range check might fail (e.g. when
Length = 65531)

 type UInt16 is range 0 .. 2**16 – 1;

102020-11-11

SPARK
Applications in Security

112020-11-11

Software Security
Securing Existing Software

■ Current Situation

▪ Software usually written in unsafe languages (C, C++, …)

■ Migration to Language Supporting Formal Verification

▪ Very expensive when done manually

■ Options

▪ Only replace critical parts of software

▪ Use code generation

122020-11-11

Protocol Verification
RecordFlux

https://github.com/Componolit/RecordFlux | https://arxiv.org/abs/1910.02146

■ Formal Specification of Messages
(and Protocol Sessions)

■ Model Verification

■ Generation of Verifiable Binary
Parsers

■ Generation of Verifiable Message
Serializers

https://github.com/Componolit/RecordFlux
https://arxiv.org/abs/1910.02146

132020-11-11

RecordFlux
Model

■ Specification language enables precise definition of
binary formats (and protocol sessions)

■ Definition of complex data formats with value
ranges, dependencies and restrictions

■ Prevention of critical errors by automated
correctness proofs at model level

Message_Type
(Message_Type)

Payload_Length
(Length_Type)

Padding
(Payload_Type)

Payload
(Payload_Type)

Length = Message'Last - Payload'Last

Length = Payload_Length * 8

Message'Length <= 2**14 * 8
and Padding'Length >= 16 * 8

142020-11-11

RecordFlux
Specification Language

package TLS_Heartbeat is

 type Message_Type is (HEARTBEAT_REQUEST => 1, HEARTBEAT_RESPONSE => 2)
 with Size => 8;

 type Length_Type is range 0 .. 2**14 - 20 with Size => 16;

 type Heartbeat_Message is
 message
 Message_Type : Message_Type;
 Payload_Length : Length_Type
 then Payload
 with Length = Payload_Length * 8;
 Payload : Payload_Type
 then Padding
 with Length = Message'Last - Payload'Last;
 Padding : Payload_Type
 then null
 if Message'Length <= 2**14 * 8 and Padding'Length >= 16 * 8;
 end message;

end TLS_Heartbeat;

Message_Type
(Message_Type)

Payload_Length
(Length_Type)

Padding
(Payload_Type)

Payload
(Payload_Type)

Length = Message'Last - Payload'Last

Length = Payload_Length * 8

Message'Length <= 2**14 * 8
and Padding'Length >= 16 * 8

152020-11-11

RecordFlux
Guarantees and Limitations

■ Guarantees

▪ Determinism

▪ Liveness

▪ Reachability

▪ Coherency

▪ Completeness

■ Limitations

▪ Some message schemes and
complex invariants not
supported yet

▪ Support for protocol sessions in
development

162020-11-11

RecordFlux
Code Generation

■ Provable message parsers and serializers created in SPARK language

■ Absence of runtime errors

■ Functional correctness

▪ Parsers guarantee received messages comply with specification

▪ Serializers ensure creation of correct messages

172020-11-11

RecordFlux
Case Study: Verified TLS Parser

■ Minimizing attack surface by
securing message parsers

■ Formalization of TLS 1.3 with
RecordFlux

■ Replacing C++ parser of Fizz TLS
library

■ Critical vulnerabilities like CVE-
2019-35602 now prevented by
proven SPARK code

https://github.com/Componolit/fizz/

https://github.com/Componolit/fizz/

182020-11-11

RecordFlux
Project GreenTLS

■ Component-based high-assurance implementation of TLS 1.3

■ Critical components in SPARK using RecordFlux

■ Current State

▪ Complete message specification

▪ Initial design and protocol specification

▪ Implementation of code generator in progress

https://github.com/Componolit/GreenTLS

https://github.com/Componolit/GreenTLS

192020-11-11

Practical Verification
Conclusion

■ Software Verification using SPARK

▪ Formal verification for software engineers

▪ Already used in industries where safety/security matters

▪ Flexible cost/benefit trade-off

■ Protocol Verification using RecordFlux

▪ Ensuring correctness of critical part of software: communication protocols

▪ Reducing effort and implementation errors by high-level abstraction and
automation

202020-11-11

Questions?

Alexander Senier
senier@componolit.com

@Componolit · componolit.com · github.com/Componolit

