Applications of Quantum Computing: From Material Simulation to Quantum Optimization and "Quantum Machine Learning"

Sabine Tornow, MUAS

Thanks to:

der Bundeswehr Universität

QUANTUM INFORMATION

If information is represented by a quantum system then it is by definition quantum information

FIRST AND SECOND QUANTUM REVOLUTION

Wikipedia: Chip ion trap for quantum computing from 2011 at NIST.

WHERE DOWE STAND?

IBM 701

QUANTUM COMPUTERS ARE GOOD AT

- Quantum Physics/Quantum Chemistry
- Factoring
- Linear Algebra
- Searching
- Optimization
- Sampling
- Accelerating machine learning

Quantum computing is at the same time an enabler for incredible opportunities as well as one of the most unexpected threats to cybersecurity.

Quantum-computing pioneer warns of complacency over Internet security nature.com • Lesedauer: 5 Min.

"I think the only obstruction to replacing RSA with a secure post-quantum cryptosystem will be will-power and programming time. I think it's something we know how to do; it's just not clear that we'll do it in time."

QUANTUM COMPUTERS ARE GOOD AT

- Quantum Physics/Quantum Chemistry
- Factoring
- Linear Algebra
- Searching
- Optimization
- Sampling
- Accelerating machine learning

Present quantum hardware enables development of quantum heuristics

QUANTUM COMPUTING

- I. Quantum Computing
- 2. Applications:

- Material Simulation/Open Quantum Systems
- Optimisation
- Machine Learning
- 3. Error mitigation

QUBIT

SUPERPOSITION

$$|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle,$$

$$|\psi\rangle = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$$

Sabine Tornow

9

 $a_0, a_1 \in \mathbb{C},$

$$\sum_{k=0}^{n-1} |a_k|^2 = 1$$

SIMULATING A QUANTUM SYSTEM ON CLASSICAL COMPUTERS

SIMULATING A QUANTUM SYSTEM ON CLASSICAL COMPUTERS

Z-MEASUREMENT

State prepared in:

 $|0\rangle$

Superposition

Z-MEASUREMENT

State prepared in:

ENTANGLEMENT

Most remarkable manifestation of quantum information is

Entanglement (Verschränkung)

$$|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$

$$\begin{array}{c} \mathsf{A} & |+\rangle \\ & \bullet \\ \mathsf{B} & |0\rangle \end{array} \end{array} \qquad \left\{ \begin{array}{c} |\psi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B \right) \\ \end{array} \right\}$$

This state of two qubits behaves in ways that cannot be explained by supposing that each qubit has a state of its own.

ENTANGLEMENT

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B \right)$$

ENTANGLEMENT

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B \right)$$

COMPARISON BETWEEN QUANTUM INFORMATION AND DISCRETE CLASSICAL PROBABILITY

Probability p_0 (p_1) that bit is 0 (1)

CLASSICAL PROBABILITY THEORY

 (p_0) p_1 State: probability vector p_2 p_3

$$\sum p_n = 1, \ 0 \le p_n \le 1, \ p_n \in \mathbb{R}$$

Time evolution:

$(s_0$	0 <i>s</i> ₀₁	<i>s</i> ₀₂	s_{03}	(p_0)
<i>s</i> ₁	0 <i>s</i> ₁₁	<i>s</i> ₁₂	<i>s</i> ₁₃	p_1
<i>s</i> ₂	0 s ₂₁	<i>s</i> ₂₂	<i>s</i> ₂₃	p_2
s_3	0 s ₃₁	<i>s</i> ₃₂	s ₃₃	(p_3)

Stochastic matrix

CLASSICAL PROBABILITY THEORY (EXAMPLE)

 $\begin{pmatrix} 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

After the first time step

After the sec

$$\begin{pmatrix} 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \qquad 0 \qquad \underbrace{\frac{1}{2}}_{\frac{1}{2}}$$

ond time step
$$1/2$$
00 $1/2$ 00 0 $1/2$ $1/2$

 $\left(\begin{array}{c} 0 \end{array} \right)$

1/2 1/2

3

0

0

QUANTUM INFORMATION

State: vector of probability amplitudes

$$a_n \in \mathbb{C}$$
$$0 \le |a_n|^2 \le 1$$

 (a_0)

 a_1

 a_2

 a_3

u_{00}	u_{01}	u_{02}	u_{03}	(a_0)	
u_{10}	u_{11}	u_{12}	<i>u</i> ₁₃	a_1	
u_{20}	u_{21}	u_{22}	<i>u</i> ₂₃	a_2	
u_{30}	u_{31}	u_{32}	u_{33}	$\left(a_{3}\right)$	

QUANTUM INFORMATION (EXAMPLE)

QUANTUM INFORMATION (EXAMPLE)

The system is again in state $|0\rangle$.

The system is never in state $|3\rangle$ (interference).

Quantum computing is reversible.

QUANTUM COMPUTING / QUANTUM GATES

QUANTUM COMPUTING / QUANTUM GATES

QUANTUM COMPUTING / QUANTUM GATES

QUANTUM COMPUTING PRINCIPLE

- I. Prepare the quantum computer in an initial state: $|\psi\rangle = |00...0\rangle = |0\rangle \otimes |0\rangle ... \otimes |0\rangle$
- 2. Apply gates (multiplication with a unitary matrix)
- 3. Perform a measurement

$$\begin{pmatrix} 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 0 & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 & 0 & -1/\sqrt{2} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

N qubits with 2^N states at the same time

$$|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle + a_2 |2\rangle + a_3 |3\rangle + a_4 |4\rangle + a_5 |5\rangle + a_6 |6\rangle + a_7 |7\rangle$$

N bits with 2^N states, one at a time

A qubit does not need to have a definite value until it is measured

A bit always has a definite value

A qubit in an unknown state cannot be copied

A bit can be copied

Reading a qubit may change its state (if the qubit being read is entangled with another qubit, reading one of the qubits will affect the other)

Reading one bit does not change its value and has no effect on any other

QUANTUM COMPUTING

EM Quantum

- I. Quantum Computing
- 2. Applications:
 - Material Simulation/Open Quantum Systems
 - Optimization
 - Machine Learning

understanding would have many relevant applications, e.g., energy storage

exponential growth of variables, efficiently simulating quantum many-body systems is hard on a classical computer Dissipative two-electron transfer: A numerical renormalization group study, Sabine Tornow, Ralf Bulla, Frithjof B.Anders, and Abraham Nitzan Phys. Rev. B **78**, 035434

$$H_{sys} = -t_{12} \sigma_x + \epsilon \sigma_z \qquad \qquad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$H_{sys-bath} = \sum_{k=1}^n g \ (\sigma_x \otimes \sigma_{x,k} + \sigma_y \otimes \sigma_{y,k}) \qquad \qquad \sigma_z = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

ELECTRON TRANSFER ON THE QUANTUM COMPUTER

$$\left(\begin{array}{c} \hline R_x(2 t_{12} \Delta t) \hline R_z(2 \epsilon \Delta t) \\ \end{array}\right)^{\tau}$$

40

QUANTUM COMPUTING

- I. Quantum Computing
- 2. Applications:

- Material Simulation/Open Quantum Systems
- Optimization
- Machine Learning
- 3. Error mitigation

2. Amplitude encoding
$$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \rightarrow |x\rangle = x_0 |0\rangle + x_1 |1\rangle$$

2. Amplitude encoding
$$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \rightarrow |x\rangle = x_0 |0\rangle + x_1 |1\rangle$$

3. Hamiltonian encoding:
$$H = \begin{pmatrix} x_{00} & x_{01} \\ x_{10} & x_{11} \end{pmatrix}$$
, $U = e^{-i H t}$

2. Amplitude encoding
$$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \rightarrow |x\rangle = x_0 |0\rangle + x_1 |1\rangle$$

3. Hamiltonian encoding:
$$H = \begin{pmatrix} x_{00} & x_{01} \\ x_{10} & x_{11} \end{pmatrix}$$
, $U = e^{-i H t}$

4. Hamiltonian encoding:
$$H = \sum_{k} h_k \sigma_k - \sum_{\langle k,l \rangle} J_{kl} \sigma_k \otimes \sigma_l$$

CLUSTERING/OPTIMIZATION

Sabine Tornow

OPTIMIZATION ON A QUANTUM/CLASSICAL COMPUTER

The QC is an open quantum system itself

QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

$$\mathcal{U}(\beta) = e^{-iH_0 \cdot \beta} \qquad \qquad \mathcal{N}(\gamma) = e^{-iH_0 \cdot \beta}$$

 $-iH_1\cdot\gamma$

For the optimal choice of β and γ , $|\psi\rangle$ corresponds to the lowest energy of H.

Example: Clustering

Best solution = [0, 0, 0, 1, 1, 1] cost = 5.4

QUANTUM COMPUTING

- I. Quantum Computing
- 2. Applications:

- Material Simulation/Open Quantum Systems
- Optimization
- Machine Learning
- 3. Error mitigation

MACHINE LEARNING ON THE QUANTUM COMPUTER

MACHINE LEARNING ON THE QUANTUM COMPUTER

QUANTUM COMPUTING

- I. Quantum Computing
- 2. Applications:
 - Material Simulation/Open Quantum Systems
 - Optimisation
 - Machine Learning
- 3. Error mitigation

• Zero noise extrapolation

• Zero noise extrapolation

• Zero noise extrapolation

$$N \rightarrow 0$$

• Machine learning for error mitigation

• Machine learning for error mitigation

Predict

• Test symmetry

• Quantum error detection

• Quantum error correction

QUANTUM COMPUTING

• Emerging quantum hardware enables evaluation of (heuristic) quantum algorithms

 Quantum advantage for near-term devices (NISQ) will only be achieved by error mitigation

der Bundeswehr

ünchen

Sabine Tornow, MUAS

Thanks to: Universität

LITERATURE

