Applications of Quantum Computing: From Material Simulation to Quantum Optimization and „Quantum Machine Learning"

QUANTUM INFORMATION

If information is represented by a quantum system then it is by definition quantum information

FIRST AND SECOND QUANTUM REVOLUTION

Wikipedia: Chip ion trap for quantum computing from 2011 at NIST.

WHERE DO WE STAND?

IBM 701

QUANTUM COMPUTERS ARE GOOD AT

- Quantum Physics/Quantum Chemistry
- Factoring
- Linear Algebra
- Searching
- Optimization
- Sampling
- Accelerating machine learning

Quantum computing is at the same time an enabler for incredible opportunities as well as one of the most unexpected threats to cybersecurity.

Quantum-computing pioneer warns of complacency over Internet security nature.com • Lesedauer: 5 Min.
"I think the only obstruction to replacing RSA with a secure post-quantum cryptosystem will be will-power and programming time. I think it's something we know how to do; it's just not clear that we'll do it in time."

QUANTUM COMPUTERS ARE GOOD AT

- Quantum Physics/Quantum Chemistry
- Factoring
- Linear Algebra
- Searching
- Optimization
- Sampling
- Accelerating machine learning

Present quantum hardware enables development of quantum heuristics

QUANTUM COMPUTING

I. Quantum Computing
2. Applications:

- Material Simulation/Open Quantum Systems
- Optimisation
- Machine Learning

3. Error mitigation

QUBIT

|17

SUPERPOSITION

$$
\begin{aligned}
& |\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle, \\
& |\psi\rangle=\binom{a_{0}}{a_{1}}
\end{aligned}
$$

$$
a_{0}, a_{1} \in \mathbb{C}
$$

$$
\sum_{k=0}^{n-1}\left|a_{k}\right|^{2}=1
$$

SIMULATING A QUANTUM SYSTEM ON CLASSICAL COMPUTERS

SIMULATING A QUANTUM SYSTEM ON CLASSICAL COMPUTERS

Z-MEASUREMENT

State prepared in:

Superposition
|1)

Z-MEASUREMENT

State prepared in:

$|0\rangle$
|1)

Z-MEASUREMENT

State prepared in:

|1)

ENTANGLEMENT

Most remarkable manifestation of quantum information is

Entanglement (Verschränkung)

This state of two qubits behaves in ways that cannot be explained by supposing that each qubit has a state of its own.

ENTANGLEMENT

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

ENTANGLEMENT

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

COMPARISON BETWEEN QUANTUM INFORMATION AND DISCRETE CLASSICAL PROBABILITY

Probability $p_{0}\left(p_{1}\right)$ that bit is $0(1)$

$$
\text { Qubit: }|\psi\rangle=a|0\rangle+b|1\rangle
$$

Probability $|a|^{2}$ that state is in $|0\rangle$
$|b|^{2}$ that state is in $|1\rangle$

CLASSICAL PROBABILITY THEORY

State: probability vector $\left(\begin{array}{l}p_{0} \\ p_{1} \\ p_{2} \\ p_{3}\end{array}\right)$

$$
\sum p_{n}=1,0 \leq p_{n} \leq 1, p_{n} \in \mathbb{R}
$$

Time evolution:

$$
\left(\begin{array}{llll}
s_{00} & s_{01} & s_{02} & s_{03} \\
s_{10} & s_{11} & s_{12} & s_{13} \\
s_{20} & s_{21} & s_{22} & s_{23} \\
s_{30} & s_{31} & s_{32} & s_{33}
\end{array}\right)\left(\begin{array}{l}
p_{0} \\
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)
$$

Stochastic matrix

CLASSICAL PROBABILITY THEORY (EXAMPLE)

$\left(\begin{array}{cccc}0 & 1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0 & 1 / 2 \\ 1 / 2 & 0 & 0 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$

After the first time step $\quad\left(\begin{array}{cccc}0 & 1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0 & 1 / 2 \\ 1 / 2 & 0 & 0 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2 & 0\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)$

After the second time step $\left(\begin{array}{cccc}0 & 1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 0 & 0 & 1 / 2 \\ 1 / 2 & 0 & 0 & 1 / 2 \\ 0 & 1 / 2 & 1 / 2 & 0\end{array}\right) \frac{1}{2}\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right)$

QUANTUM INFORMATION

State: vector of probability amplitudes $\left(\begin{array}{l}a_{0} \\ a_{1} \\ a_{2} \\ a_{3}\end{array}\right) \quad \begin{aligned} & a_{n} \in \mathbb{C} \\ & 0 \leq\left|a_{n}\right|^{2} \leq 1\end{aligned}$

$$
\left(\begin{array}{llll}
u_{00} & u_{01} & u_{02} & u_{03} \\
u_{10} & u_{11} & u_{12} & u_{13} \\
u_{20} & u_{21} & u_{22} & u_{23} \\
u_{30} & u_{31} & u_{32} & u_{33}
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

$$
\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

QUANTUM INFORMATION (EXAMPLE)

$$
\begin{aligned}
& \left(\begin{array}{cccc}
0 & 1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 0 & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 0 & -1 / \sqrt{2} \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2} & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 \\
1 / \sqrt{2} & 0 & 0 \\
1 / \sqrt{2} & 0 & 0 \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2} \\
0 & -1 / \sqrt{2} & 0
\end{array}\right)
\end{aligned}
$$

QUANTUM INFORMATION (EXAMPLE)

$$
\left(\begin{array}{cccc}
0 & 1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 0 & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 0 & -1 / \sqrt{2} \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2} & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

The system is again in state $|0\rangle$.
The system is never in state $|3\rangle$ (interference).
Quantum computing is reversible.

QUANTUM COMPUTING / QUANTUM GATES

QUANTUM COMPUTING / QUANTUM GATES

QUANTUM COMPUTING / QUANTUM GATES

$$
\text { CNOT }=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \text { Control }|+\rangle, \bigoplus_{\text {Target }}|0\rangle \quad \nrightarrow \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

QUANTUM COMPUTING PRINCIPLE

I. Prepare the quantum computer in an initial state: $|\psi\rangle=|00 \ldots 0\rangle=|0\rangle \otimes|0\rangle \ldots \otimes|0\rangle$
2. Apply gates (multiplication with a unitary matrix)
3. Perform a measurement

$$
\left(\begin{array}{cccc}
0 & 1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 0 & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 0 & -1 / \sqrt{2} \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2} & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)
$$

$$
\left(\begin{array}{cccc}
0 & 1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 0 & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & 0 & -1 / \sqrt{2} \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2} & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

QUANTUM COMPUTER/ CLASSICAL COMPUTER

N qubits with 2^{N} states at the same time

$$
|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle+a_{2}|2\rangle+a_{3}|3\rangle+a_{4}|4\rangle+a_{5}|5\rangle+a_{6}|6\rangle+a_{7}|7\rangle
$$

N bits with 2^{N} states, one at a time

QUANTUM COMPUTER/ CLASSICAL COMPUTER

A qubit does not need to have a definite value until it is measured

A bit always has a definite value

QUANTUM COMPUTER/ CLASSICAL COMPUTER

A qubit in an unknown state cannot be copied

A bit can be copied

QUANTUM COMPUTER/ CLASSICAL COMPUTER

Reading a qubit may change its state (if the qubit being read is entangled with another qubit, reading one of the qubits will affect the other)

Reading one bit does not change its value and has no effect on any other

QUANTUM COMPUTING

I. Quantum Computing
2. Applications:

- Material Simulation/Open Quantum Systems
- Optimization
- Machine Learning

OPEN QUANTUM SYSTEMS ONTHE QUANTUM COMPUTER

Dissipative two-electron transfer: A numerical renormalization group study, Sabine Tornow, Ralf Bulla, Frithjof B. Anders, and Abraham Nitzan Phys. Rev. B 78, 035434

OPEN QUANTUM SYSTEMS ON THE QUANTUM COMPUTER

Physical model

Pauli Hamiltonian

Bath

$$
\begin{aligned}
& H_{s y s}=-t_{12} \sigma_{x}+\epsilon \sigma_{z} \\
& H_{\text {sys-bath }}=\sum_{k=1}^{n} g\left(\sigma_{x} \otimes \sigma_{x, k}+\sigma_{y} \otimes \sigma_{y, k}\right) \\
& \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

OPEN QUANTUM SYSTEMS ON THE QUANTUM COMPUTER

Pauli Hamiltonian

OPEN QUANTUM SYSTEMS ONTHE QUANTUM COMPUTER

ELECTRONTRANSFER ONTHE QUANTUM COMPUTER

$$
\left(-\sqrt{R_{x}\left(2 t_{12} \Delta t\right)}-R_{z}(2 \epsilon \Delta t)-\right)^{n}
$$

Occupation probability $\quad \varepsilon=0$

Occupation probability
$\varepsilon \neq 0$

OPEN QUANTUM SYSTEMS ONTHE QUANTUM COMPUTER

OPEN QUANTUM SYSTEMS ONTHE QUANTUM COMPUTER

Tornow, Gehrke, Helmbrecht, to be published

OPEN QUANTUM SYSTEMS ONTHE QUANTUM COMPUTER

QUANTUM COMPUTING

I. Quantum Computing
2. Applications:

- Material Simulation/Open Quantum Systems
- Optimization
- Machine Learning

3. Error mitigation

CLASSICAL DATA ONTHE QUANTUM COMPUTER

I. Number encoding: $3 \rightarrow 11 \rightarrow|11\rangle$

CLASSICAL DATA ONTHE QUANTUM COMPUTER

I. Number encoding: $3 \rightarrow 11 \rightarrow|11\rangle$
2.Amplitude encoding $\binom{x_{0}}{x_{1}} \rightarrow|x\rangle=x_{0}|0\rangle+x_{1}|1\rangle$

CLASSICAL DATA ONTHE QUANTUM COMPUTER

I. Number encoding: $3 \rightarrow 11 \rightarrow|11\rangle$
2.Amplitude encoding $\binom{x_{0}}{x_{1}} \rightarrow|x\rangle=x_{0}|0\rangle+x_{1}|1\rangle$
3. Hamiltonian encoding: $H=\left(\begin{array}{ll}x_{00} & x_{01} \\ x_{10} & x_{11}\end{array}\right), U=e^{-i H t}$

CLASSICAL DATA ONTHE QUANTUM COMPUTER

I. Number encoding: $3 \rightarrow 11 \rightarrow|11\rangle$
2.Amplitude encoding $\binom{x_{0}}{x_{1}} \rightarrow|x\rangle=x_{0}|0\rangle+x_{1}|1\rangle$
3. Hamiltonian encoding: $H=\left(\begin{array}{ll}x_{00} & x_{01} \\ x_{10} & x_{11}\end{array}\right), U=e^{-i H t}$
4. Hamiltonian encoding: $H=\sum_{k} h_{k} \sigma_{k}-\sum_{<k, l>} J_{k l} \sigma_{k} \otimes \sigma_{l}$

CLUSTERING/OPTIMIZATION

Tornow, S. \& Mewes, H.W. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res. 3 I, 6283-6289

OPTIMIZATION ONA QUANTUM/CLASSICAL COMPUTER

The QC is an open quantum system itself

QPU

CPU

Bath

QUANTUM APPROXIMATE OPTIMIZATION ALGORITHM

$$
\mathscr{U}(\beta)=e^{-i H_{0} \cdot \beta} \quad \mathscr{N}(\gamma)=e^{-i H_{1} \cdot \gamma}
$$

For the optimal choice of β and γ, $|\psi\rangle$ corresponds to the lowest energy of H.

Example: Clustering

QUANTUM COMPUTING

I. Quantum Computing
2. Applications:

- Material Simulation/Open Quantum Systems
- Optimization
- Machine Learning

3. Error mitigation

MACHINE LEARNING ONTHE QUANTUM COMPUTER

MACHINE LEARNING ONTHE QUANTUM COMPUTER

QUANTUM COMPUTING

I. Quantum Computing
2. Applications:

- Material Simulation/Open Quantum Systems
- Optimisation
- Machine Learning

3. Error mitigation

ERROR CORRECTION AND ERROR MITIGATION

- Zero noise extrapolation
$\cdots-U(\Delta t)-U(\Delta t)-U(\Delta t)-U(\Delta t)-\cdots$

ERROR CORRECTION AND ERROR MITIGATION

- Zero noise extrapolation

$$
\cdots-U(\Delta t)-U(\Delta t)-U(\Delta t)-U(\Delta t)-\cdots
$$

$$
\cdots-U(\Delta t)-N-U(\Delta t)-N-U(\Delta t)-N-U(\Delta t)-N-\cdots
$$

ERROR CORRECTION AND ERROR MITIGATION

- Zero noise extrapolation

$$
\cdots=U(\Delta t)-U(\Delta t)-U(\Delta t)-U(\Delta t)-\cdots
$$

$$
\cdots-U(\Delta t)-N-N(\Delta t)-N-U(\Delta t)-N-U(\Delta t)-N-\cdots
$$

$$
N \rightarrow 0
$$

ERROR CORRECTION AND ERROR MITIGATION

- Machine learning for error mitigation

ERROR CORRECTION AND ERROR MITIGATION

- Machine learning for error mitigation

ERROR CORRECTION AND ERROR MITIGATION

- Test symmetry

ERROR CORRECTION AND ERROR MITIGATION

- Quantum error detection

ERROR CORRECTION AND ERROR MITIGATION

- Quantum error correction

$|\psi\rangle$

QUANTUM COMPUTING

- Emerging quantum hardware enables evaluation of (heuristic) quantum algorithms
- Quantum advantage for near-term devices (NISQ) will only be achieved by error mitigation

der Bundeswehr

LITERATURE

THE FUTUREIS QUANTUM
Triv. e d e

The Next Decade in QUANTUM COMPUTINGAnd HOW TO PLAY

ECG

$$
\begin{aligned}
& \text { consensus stuor riport } \\
& \text { PUANTUM COMPUTING } \\
& \text { Press and Prospects } \\
& \text { OISKIT } \\
& \text { THE FUTUREIS }
\end{aligned}
$$

acatech IMPULIS

Innovationspotenziale der Quantentechnologien der zweiten Generation

Henning Kagermann, Florian Sïssengut
Jorg Kömer, Annka Liepold

