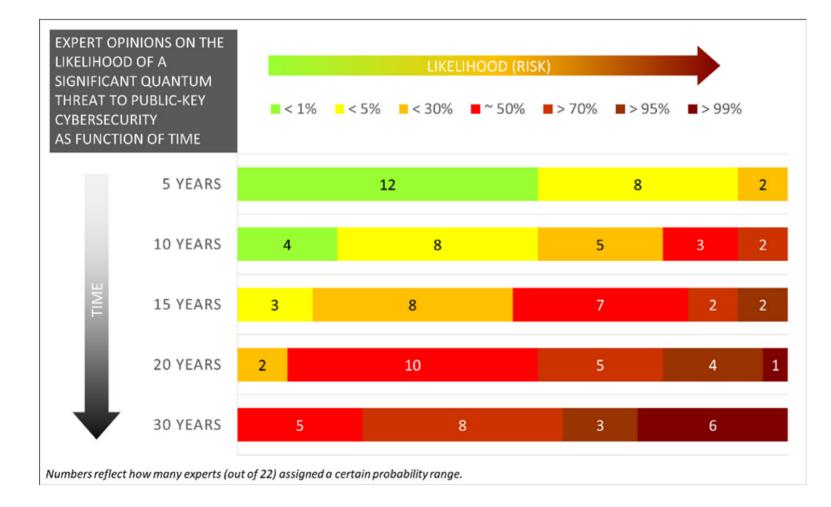
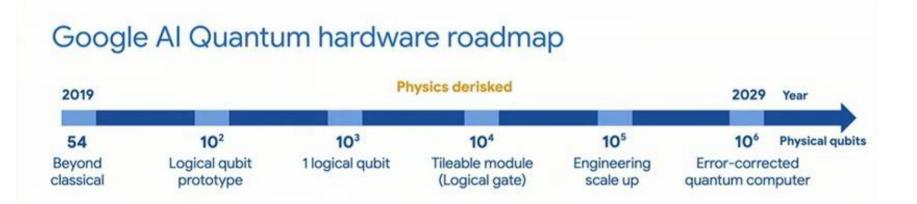
Update on PQC: Standardization and Migration

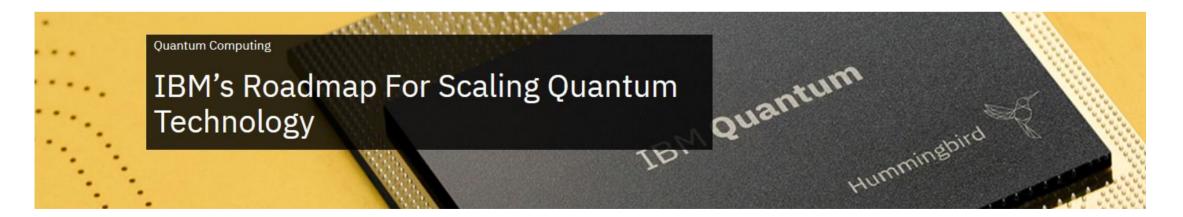

Quantum Technology Workshop at CODE 2020

Leonie Bruckert, secunet AG

Agenda

- 01 Quantum Threat
- 02 Post-Quantum Cryptography and Standardization
- 03 Migration and Recommendations


Quantum Threat (1)



- Study from 10/2019
- More than 80 QC experts were asked for their estimation
- Only 22 experts sent a response

https://globalriskinstitute.org/publications/ quantum-threat-timeline/

Quantum Threat (2)

[Reminder] Cryptographic Primitives

S Y Μ Μ Е т R С С R Y Ρ Т 0 G R Α Ρ Η Y

Symmetric Ciphers e.g. • AES
Hash Functions e.g.
 SHA-1
 SHA-2
 SHA-3
Message Authentication Code (MAC) e.g.
 HMAC
 CMAC

- Α S Y Μ Μ Е Т R С С R Y Ρ Т 0 G R Α Ρ Н Y
- Asymmetric Encryption e.g.
- ElGamal
- ECIES
- Digital Signatures e.g.
- RSA
- ECDSA
- Key Exchange e.g.
- DH
- ECDH

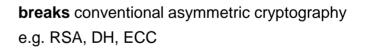
Quantum Cryptanalysis

GROVER'S ALGORITHM

Lov Grover, 1996

Speeds up search in unstructured data base
 → key search

weakens symmetric ciphers and hash functions e.g. AES, SHA2


Increase key size and output length of hash functions

SHOR'S ALGORITHM

Peter Shor, 1994

Solves efficiently

- The factoring problem
- The discrete logarithm problem

Develop new quantum-resistant algorithms

Quantum Resource Estimates

ECC			RSA		
[GM2019]	NIST P-224: 2042 logical qubits $\approx 4.91 \cdot 10^7$ physical qubits	NIST P-256: 2330 logical qubits $\approx 6.77 \cdot 10^7$ physical qubits	[GM2019]	RSA-2048: 4098 logical qubits $\approx 1.72 \cdot 10^8$ physical qubits	RSA-3072: 6146 logical qubits $\approx 6.41 \cdot 10^8$ physical qubits
[HJN+2020]	NIST P-256: 2124 logical qubits		[GE2019]	"How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits"	

ECC is easier to break than RSA!

Classifying and Prioritizing Attack Scenarios

High priority

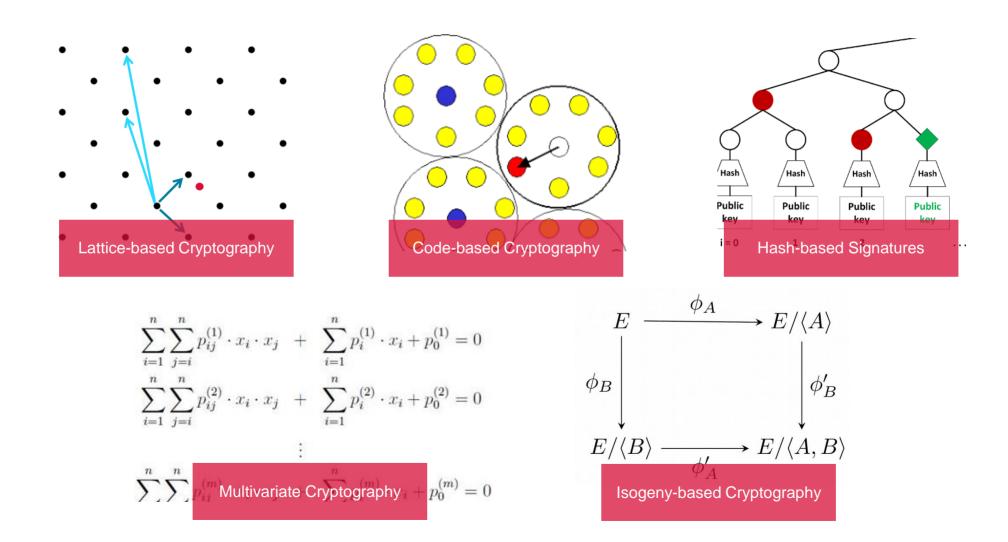
"low" priority

"Store now, decrypt later"

Intercept encrypted communication data and store it until large quantum computers are available

Malicious software updates

Introduce malware via manipulated software updates with forged signatures


OFFLINE ATTACK

Man-in-the-middle

Attack against short term authentication with forged signatures (e.g. establishment of an authenticated channel)

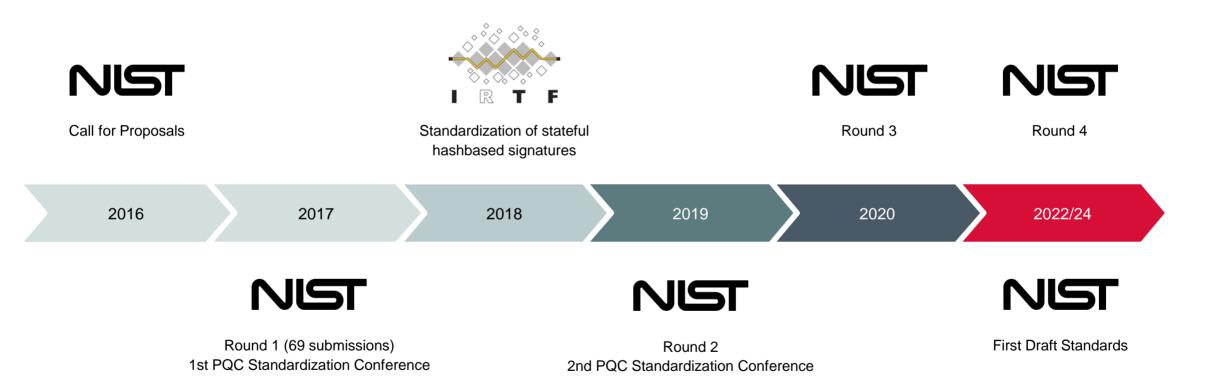
ONLINE ATTACK

Post-Quantum Cryptography

Hash-based Signatures

- Security is solely based on hash functions
- Building block: One-time Signatures (OTS)
 → A single signature per key pair!
- 1979, Ralph Merkle: binary hash trees
 → Limited number of signatures per key pair!
 → State management!
- Stateless hash-based signatures
 - \rightarrow Few-time Signatures (FTS)
 - \rightarrow Significantly larger signatures

High confidence in security

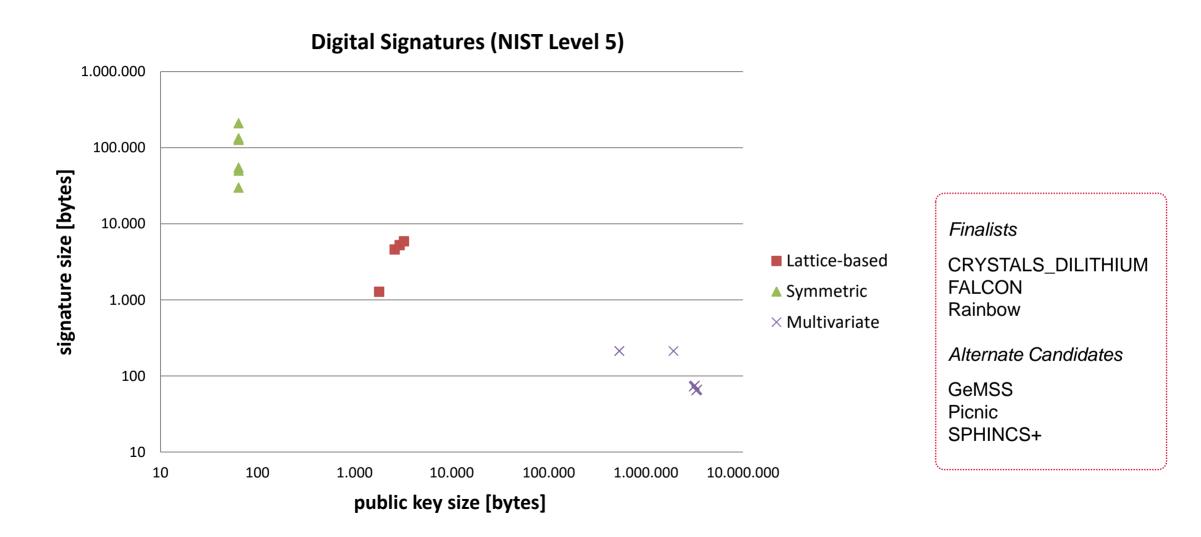

Two standardized stateful hash-based signature schemes

- eXtended Merkle Signature Scheme (XMSS) RFC 8391, 2018
- Leigthon-Micali Signatures (LMS) RFC 8554, 2019

NIST Special Publication 800-208

Recommendation for Stateful Hash-Based Signature Schemes

PQC Standardization - Timeline


NIST Standardization (1)

NIST

100.000 Finalists ciphertext size [bytes] 10.000 **Classic McEliece** CRYSTALS_KYBER Code-based NTRU SABER 1.000 Lattice-based ▲ Isogeny-based Alternate Candidates X DH-3072 BIKE 100 • ECDH-256 FrodoKEM HQC **NTRU Prime** SIKE 10 10 100 1.000 10.000 100.000 1.000.000 public key size [bytes]

Key Encapsulation Mechanism (NIST Level 4-5)

NIST Standardization (2)

NIST

Responding to Attack Scenarios

High priority

"Store now, decrypt later"

 \rightarrow Hybrid (classical + PQC) key exchange

Malicious software updates

→ Stateful hash based signatures

OFFLINE ATTACK

Man-in-the-middle

→ PQC/Hybrid digital signatures

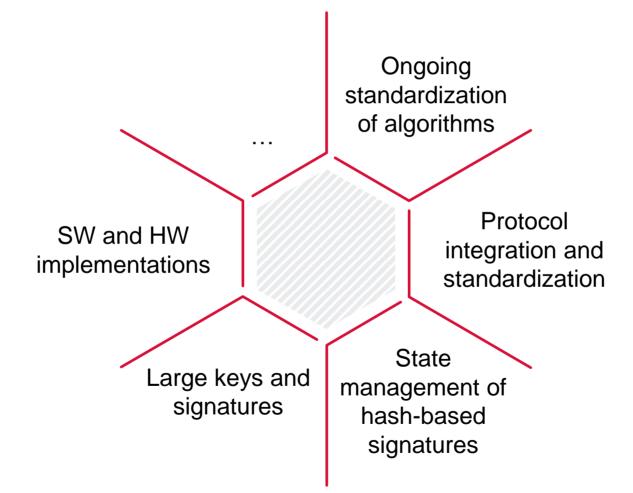
ONLINE ATTACK

"low" priority

Migration to Post-Quantum Cryptography

X . . . How long should your data remain confidential?

Y . . . How long will it take to deploy PQC?


Z... How long will it take to build a cryptographic relevant quantum computer?

In addition, consider that data encrypted today can be (and actually is) intercepted, stored and decrypted later!

Michele Mosca in "Cybersecurity in an era with quantum computers: will we be ready?" 2015

Migration Challenges

Further Standardization Activities

- draft-ietf-ipsecme-ikev2-intermediate-05
- draft-ietf-ipsecme-ikev2-multiple-ke-01
- draft-campagna-tls-bike-sike-hybrid-05
- draft-ietf-tls-hybrid-design-01
- draft-hoffman-c2pq-07

ITU-T X.509 / ISO/IEC 9594-8

- Quantum-safe Algorithmic Framework
- Limits to Quantum Computing applied to symmetric key sizes
- Quantum-safe Threat Assessment
- Case Studies and Deployment Scenarios
- Quantum-Safe Key Exchanges
- Quantum-safe Virtual Private Networks
- Quantum-safe Identity-based Encryption
- Migration Strategies and Recommendations to Quantum-safe Schemes

Conclusion

Bundesamt für Sicherheit in der Informationstechnik

- Deploy PQC as early as possible
 - Priority on key exchange and software updates
 - Use hybride mode = classical cryptography + PQC
- Develop migration strategies
- Adapt cryptographic protocols to PQC
 - standardization
 - cryptoagility
- Secure implementations in hardware and software

Act now!

Migration zu Post-Quanten-Kryptografie

Handlungsempfehlungen des BSI

Thank you for your attention! Any Questions?

Leonie Bruckert

Beratung Defence

secunet Security Networks AG

leonie.bruckert@secunet.com