

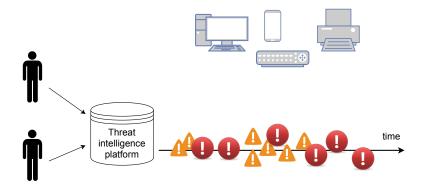
Identification and Assessment of Active Cyber Threats

Ph.D. Research Proposal

Lukáš Sadlek, Pavel Čeleda, Daniel Tovarňák sadlek@fi.muni.cz

Masaryk University

November 12, 2020 @ CODE 2020


Motivation

- Large volume of cyber threat data is shared
- Only some **fraction** is related to protected assets
- Threat data processing can be improved

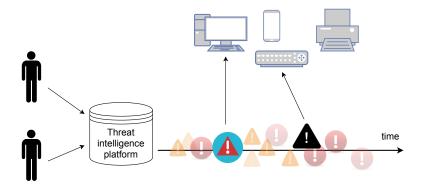

Selected Area	Not Satisfied
Cleanliness and quality of data	37.4%
Context	35.4%
Location-based visibility	42.5%
Machine learning	55.9%

Table: 2019 SANS CTI Survey Results

Research Problem

Research Problem

Research Questions

RQ1

How can we **identify** active cyber threats based on globally shared data and local knowledge about assets?

Research Questions

RQ1

How can we **identify** active cyber threats based on globally shared data and local knowledge about assets?

RQ2

How can we **assess** and prioritize active cyber threats based on the impact on assets?

RQ1: Active Cyber Threat Identification

• Actionable information about cyber threats should be

- Relevant
- Timely
- Accurate
- Complete
- Ingestible
- Address relevance and accuracy of results

Existing methods

- Enumerations and sharing standards
- Methods for determining properties of assets

RQ1: Current State

Existing methods

- Enumerations and sharing standards
- Methods for determining properties of assets

Issues

- Mutual interoperability
- Some methods are applicable under specific conditions
- Data processing must be fast

RQ1: Proposed Approach – Threat Data

Data conforming to information sharing standards

- CVE, CVSS, CPE, CWE, CAPEC, MITRE ATT&CK
- We can **trust** the content
- Enumerations cover a broad landscape

Open-source cyber threat intelligence

- Information about ongoing campaigns or attacks
- Trust issues

RQ1: Proposed Approach – Local Context

- Select relevant threats by introducing local context
- Knowledge about assets:
 - Passive monitoring IP flows
 - Active monitoring data from scanners
 - Logs extraction application logs

RQ1: Contribution

- Improve the combination beyond simple joins of data
- Consider also assets influenced by the vulnerable ones
- Improve relevance and accuracy of results

RQ2: Cyber Threat Assessment

Methods

- Simple metrics or tables
 - Fast computation
 - No complex assessment
 - Example: CVSS score
- Sophisticated
 - Longer computing time
 - Suitable for multistep attacks
 - Example: Attack graphs

RQ2: Current State

- MulVaL is an efficient attack graph generator
 - Quadratic complexity
 - Logical programming
- Comparison of severity
 - Bayesian Attack Graph uses probability
 - Exponential complexity

RQ2: Proposed Approach and Contribution

- Data from RQ1
- Attack graphs for near real-time assessment
- Improvement using state-of-the-art technologies and methods
 - Graph databases with their algorithms
 - Machine learning

Summary

- Contextualization of threats with knowledge about assets
- Improved interoperability concerning relevance and accuracy
- Fast threat assessment using attack graphs
- Step further to successful threat mitigation

M A S A R Y K U N I V E R S I T Y