
Python-Based TinyIPFIX in Wireless Sensor
Networks

Ramon Huber, Eryk Schiller, and Burkhard Stiller

Communication Systems Group CSG
Department of Informatics IfI

University of Zürich UZH
Binzmühlestrasse 14, CH—8050 Zürich, Switzerland

ramon.huber@uzh.ch, [schiller|stiller]@ifi.uzh.ch

Abstract. This work designs and implements a new TinyIPFIX ap-
plication layer protocol in Micropython, which enables low power com-
munication in a WSN. The system is deployed on the novel Espressif
ESP32-WROOM-32D Internet-of-Things (IoT) platform. The protocol is
implemented and evaluated in an indoor smart-home scenario. It displays
promising performance and reasonable overhead. Furthermore, it demon-
strates that Micropython may pave the way towards Network Function
Virtualization (NFV) on IoT devices by providing highly portable soft-
ware functions implemented in a high-level programming language.

Keywords: Wireless Sensor Networks · Internet-of-Things · TinyIPFIX
· Espressif ESP32-WROOM-32D · ESP32 · Micropython · Network Func-
tion Virtualization (NFV)

1 Introduction

The deployment of constrained Internet-of-Things (IoT) devices became ubiq-
uitous due to their low price. Such devices perform the role of sensor modules,
which are designed to sense the environment and send the information to other
system components (e.g., applications residing in the cloud). Sensors organized
in complex structures, e.g., multi-hop networks, are referred to as Wireless
Sensor Networks (WSN). WSNs may support many different areas, e.g., agri-
culture, energy, health, industrial, smart city, smart home, or supply chain [4].
As an example, the combination of smart home/city in energy applications may
lead to reduced energy wastes by measuring the energy needs of each household
and planning the energy production accordingly.

WSNs often bring challenges. Two main challenges recognized in this work
are (a) a limited programmability of sensor devices, while the implementation
of advanced features requires tedious low level programming and (b) the energy
efficient operation, while most of the sensors are battery powered.

Three approaches were chosen to cope with these challenges: (1) a new gen-
eration of sensor devices was used, relaxing the constraints on CPU, RAM, and



2 R. Huber et al.

networking, (2) a high-level programming language was chosen to efficiently im-
plement energy efficient operations, and (3) an optimal protocol was chosen to
send data in the WSN, which keeps overhead at a minimal level and therefore
saves energy.

The Espressif ESP-WROOM-32D (i.e., ESP32) [8, 11] module was selected
because it can be programmed with the help of high-level languages such as Mi-
cropython [1] or JavaScript. Additionally, the Digi XBee platform [7] was con-
nected to the ESP32 module to add the IEEE 802.15.4 network support [3]. It is
worth noting that IEEE 802.15.4 is energy efficient and a widely used for indoor
environments. Furthermore, Tiny Internet Protocol Flow Information Export
(TinyIPFIX) [12] was implemented on this platform. This protocol sends meta-
data and actual sensor data in separate messages and reduces overhead in com-
parison to other application layer protocols such as Message Queuing Telemetry
Transport (MQTT) or Hypertext Transfer Protocol (HTTP) frequently used in
IoT applications.

This paper’s remainder is structured in the following way. Section 2 dis-
cusses the technologies used in this work. While Section 3 discusses different
design decisions and offers concrete examples of the implementation, Section 4
preliminarily evaluates the implementation. Finally, Section 5 summarizes the
work and outlines future work.

2 Background

The Internet Protocol Flow Information Export (IPFIX) [5, 6] is a protocol
designed to send information about traffic flows in the network. However, IP-
FIX has interesting properties for a WSN as well. IPFIX uses two messages,
i.e., Data Messages and Template Messages. Template Messages contain meta-
information, while Data Messages handle the actual information. Furthermore,
IPFIX is push-based, which means that a sender sends data when available,
however, the receiver is unable to request data from a sender.

TinyIPFIX [12] is an application layer protocol derived from IPFIX. It is
push-based and distinguishes Template and Data Messages. Template Messages
contain meta-information for the decoding of Data messages as well. While Tem-
plate Messages rarely change, they are sent less often than Data Messages. A
Data Message points towards a corresponding Template Message, which con-
tains the information on how to decode a given Data Message. However, Data
Messages maintain a limited amount of meta-information. TinyIPFIX saves en-
ergy by reducing overhead using the Template and Data Messages. Furthermore,
TinyIPFIX one-way communication paradigm allows the nodes to go sleep, thus
reducing the energy consumption on IoT devices. Thus, TinyIPFIX is well suited
for WSNs, in which it supports an energy efficient operation.

3 TinyIPFIX-based System Architecture

This section provides the description of the TinyIPFIX-based architecture.



Python-Based TinyIPFIX in Wireless Sensor Networks 3

3.1 Sensor Network (TinyIPFIX)

TinyIPFIX End Devices measure the environment using a sensor and create a
TinyIPFIX Data Message containing the sensed data. The Data Message is then
sent to a Concentrator, or directly to the Collector in the Network. To send data,
the ESP32 device [8,11] passes the message to the IEEE 802.15.4 [3] device using
a Universal Asynchronous Receiver-Transmitter (UART) connection. The IEEE
802.15.4 device sends it towards the desired destination using the IEEE 802.15.4
Physical Layer (PHY). At the destination, the packet is again received by the
IEEE 802.15.4 device and forwarded over the UART.

TinyIPFIX Concentrators may sense the environment using a local sensor,
but additionally they can receive messages from remote nodes in the network and
aggregate multiple TinyIPFIX messages together into one message. This results
in fewer larger messages sent in the network, which saves energy. Ultimately, all
messages need to arrive at the network Collector equipped with IEEE 802.15.4
interface. Each sensing device may send data directly to the Collector or over
one or multiple Concentrators in a multi-hop manner.

3.2 TinyIPFIX Collector

All messages from the WSN arrive at the Collector, i.e., the unconstrained
device running the Collector module. The Collector and overlying Publish Sub-
scribe (Pub/Sub) Network are responsible for providing the received data further
on. When a Template Message arrives at the Collector, the template is stored
only if a new template has arrived, otherwise the received template is ignored.
When a Data Message is received, it is decoded using a known template. The
data received is published using a Pub/Sub message broker, i.e., Zero Message
Queue (ZMQ) [2]. ZMQ uses the TinyIPFIX Set-Id as the Topic. Application
can subscribe to the topics of interest and process the data without needing to
implement any TinyIPFIX infrastructures.

3.3 Applications

Two applications were developed as a proof-of-concept. One application appli-
cation prints the data received from the WSN to the console on the application
server, the other application stores the data in a Relational Database Man-
agement System (RDBMS) Database. All details of the implemented system
components might be consulted online [9].

4 Evaluation

Four end devices, two concentrators and one Collector were placed in a home
environment in order to conduct a realistic evaluation of the system.



4 R. Huber et al.

4.1 Network Configuration

Every pair of devices sends their messages towards a distinct concentrator. The
two concentrators aggregate messages from the end devices together with their
own messages and send the resulting messages to the Collector.

4.2 Data Overhead

For the data overhead evaluation, TinyIPFIX is compared to the simple type-
length-value (TLV) approach [10]. The Type denotes the type of value that is
being sent, e.g., a temperature reading, the length denotes the length of the
value field, while the value field carries the actual reading. A TLV message is
built by combining one or several TLV components. Should two sensor readings
be sent, the message concatenates two TLV entries all together.

TinyIPFIX supports up to 216 Internet Assigned Numbers Authority (IANA)
predefined information elements. Additionally, TinyIPFIX can distinguish 232

enterprises, in which 216 types per enterprise may be defined. Assuming that
only one enterprise number is used in the network, TinyIPFIX supports 216

different value types. To provide a fair comparison between TinyIPFIX and the
TLV paradigm, this work assumes a 2-Byte long type field. The length field, in
turn, is assumed to be 1-Byte long, which is equal to the regular size of the length
field in TinyIPFIX. A TinyIPFIX Template Message contains 7 bytes of fixed
overhead, and 7 Bytes of overhead for every field specifier. A TinyIPFIX Data
Message contains 3 Bytes of fixed overhead, 2 Bytes of overhead for each field
specifier, and a variable amount of data. Taking the assumption that a message
consists of a 4-Byte float sensor reading (e.g., temperature reading) and a 5-Byte
timestamp (e.g., MySQL uses 5-Byte timestamps), a message in the TLV format
would consist of 6 Bytes overhead and 9 Bytes of data, which results in 40%
overhead. Under this assumption, a TinyIPFIX Template Message would contain
21-Byte overhead, while a data message would contain 3 Bytes of overhead and
9 Bytes of data. The TinyIPFIX overhead depends on how many data items
are being sent per Data Message and how many Data Messages are sent per
Template Message. Figure 1 demonstrates the TinyIPFIX overhead compared to
the TLV paradigm. The figure displays that TinyIPFIX can significantly decrease
overhead in comparison to the TLV paradigm. Especially in a WSN, where
templates do not change often (i.e., while templates do not need to be re-sent
frequently) and where several data records can be packed into a single data
message, TinyIPFIX shows excellent properties.

4.3 Transmission Reliability

To evaluate the transmission reliability, several measurements were performed.
The devices were spaced between 1 and 20 meters. In each distinct measurement,
the system ran for 1 h sending a data message every 20 seconds. The measure-
ments showed that packets arrived with a reliability of around 99% (90% in the
worst case), demonstrating an excellent real-world prototype.



Python-Based TinyIPFIX in Wireless Sensor Networks 5

Fig. 1. TinyIPFIX and TLV Overhead Comparison

5 Summary and Conclusions

In this work, a Wireless Sensor Network (WSN) platform was implemented using
Espressif ESP-WROOM-32D devices. Two different ESP-WROOM-32D device
families were considered, i.e., The Espressif ESP32 DevKitC V4 and the Mach-
hina SuperB. Every ESP32 device is equipped with a Digi XBee board in order
to support the IEEE 802.15.4 connectivity, which enables low power communi-
cation between devices in the WSN.

The implementation part of the work was performed in high-level languages.
MicroPython is used for the implementation of End Devices and Concentrators,
while Python is used in the case of the Collector. The TinyIPFIX protocol is im-
plemented as a transport mechanism delivering data from End Devices towards
the WSN Collector. The data is distributed to the applications from the Collec-
tor using a Publish/Subscribe (Pub/Sub) engine implemented with the help of
the ZMQ message broker. Two applications were developed, i.e., receiving and
processing messages arriving from the message broker.

The new approach using a high-level language (i.e., MicroPython) for the
protocol implementation enabled a faster value creation, which is impossible
on older platforms relying on low-level programming languages. Furthermore,
the TinyIPFIX is implemented in a portable high-level language allowing for
high code portability. The Micropython implementation may allow for seamless
execution of network functions (e.g., TinyIPFIX) on a broad spectrum of IoT
devices paving the way towards Network Function Virtualization (NFV) on IoT
nodes.



6 R. Huber et al.

The system was experimentally verified in a home environment. It showed
almost a 100% delivery rate in the WSN. Furthermore, it was shown that the pro-
vided TinyIPIFX implementation features lower data overhead than the Type-
Length-Value (TLV) approach.

Acknowledgements

This paper was supported partially by (a) the University of Zürich UZH, Switzer-
land, and (b) the European Union’s Horizon 2020 Research and Innovation Pro-
gram under Grant Agreement No. 830927, the CONCORDIA project.

References

1. MicroPython Homepage. https://micropython.org, accessed: 2020-09-04
2. ZeroMQ Messaging Patterns - Publish/Subscribe. https://

learning-0mq-with-pyzmq.readthedocs.io/en/latest/pyzmq/patterns/pubsub.
html, accessed: 2020-10-05

3. IEEE Standard for Low-Rate Wireless Networks. IEEE Std 802.15.4-
2020 (Revision of IEEE Std 802.15.4-2015) pp. 1–800 (2020).
https://doi.org/10.1109/IEEESTD.2020.9144691

4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Net-
works: a Survey. Computer networks 38(4), 393–422 (2002)

5. Claise, B., Trammell, B.: Information Model for IP Flow Information Export (IP-
FIX). RFC 7012, RFC Editor (09 2013), https://www.rfc-editor.org/rfc/rfc7012.
txt

6. Claise, B., Trammell, B., Aitken, P.: Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011, RFC
Editor (09 2013), https://www.rfc-editor.org/rfc/rfc7011.txt

7. Digi International: XBee/XBee-PRO S2C Zigbee RF Module User Guide (01 2020),
aG, https://www.digi.com/resources/documentation/digidocs/pdfs/90002002.pdf

8. Espressif Systems: ESP32-WROOM-32D & ESP32-WROOM-32U Datasheet
(09 2019), V1.9, https://www.espressif.com/sites/default/files/documentation/
esp32-wroom-32d esp32-wroom-32u datasheet en.pdf, Accessed: 2001-05-30

9. Huber, R.: TinyIPFIX for ESP32, GitHub Repository. https://github.com/
ramonhuber/TinyIPFIX-for-ESP32 (Oct 2020)

10. Kothmayr, T.: Data Collection in Wireless Sensor Networks for Autonomic Home
Networking. Bachelor Thesis, Department of Computer Science, Technische Uni-
versity of Munich, Munich, Germany (2010)

11. Maier, A., Sharp, A., Vagapov, Y.: Comparative Analysis and Practical Implemen-
tation of the ESP32 Microcontroller Module for the Internet of Things. In: 2017
Internet Technologies and Applications (ITA). pp. 143–148. IEEE (2017)

12. Schmitt, C., Stiller, B., Trammell, B.: TinyIPFIX for Smart Meters in Con-
strained Networks. RFC 8272, RFC Editor (11 2017), https://www.rfc-editor.org/
rfc/rfc8272.txt


