Direkt zum Inhalt | Direkt zur Navigation

UniBwM » BAU » Mathematik & Bauinformatik » Mathematik und Bauinformatik » Forschung » Corner singularities » Literatur zum DFG-Projekt: Quadratische Operatoreigenwertprobleme aus der Kontinuumsmechanik

Literatur zum DFG-Projekt: Quadratische Operatoreigenwertprobleme aus der Kontinuumsmechanik

Literatur zum DFG-Projekt: Quadratische Operator-Eigenwertprobleme aus der Kontinuumsmechanik

Literatur

zum DFG-Projekt: Numerische Lösung von quadratischen Operator-Eigenwertproblemen aus der Kontinuumsmechanik

[1] Thomas Apel, Anna-Margarete Sändig, Sergey I. Solov'ev: Computation of 3D vertex singularities for linear elasticity: Error estimates for a finite element method on graded meshes. Math. Modeling Numer. Anal. (M2AN). 36:1043-1070, 2002.
[2] Thomas Apel, Volker Mehrmann, David Watkins: Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures. Comput. Methods Appl. Mech. Engrg., vol. 191, pages 4459--4473, 2002.
[3] Thomas Apel, Volker Mehrmann, David Watkins: Numerical solution of large-scale structured polynomial or rational eigenvalue problems. In F. Cucker, R. DeVore, P. Olver, and E. Süli, editors, Foundations of Computational Mathematics, Minneapolis 2002, volume 312 of Lecture Note Series, Cambridge, 2004. London Mathematical Society, Cambridge University Press.
[4] Thomas Apel, Cornelia Pester: Quadratic eigenvalue problems in the analysis of cracks in brittle materials In: Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväskylä, 2004
[5] Peter Benner, Heike Faßbender: An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem. Lin. Alg. Appl., Vol. 263, pp. 75--111, 1997.
[6] Peter Benner, Heike Faßbender: An Implicitly Restarted Symplectic Lanczos Method for the Symplectic Eigenvalue Problem. SIAM J. Matr. Anal. Appl. 22, No. 3, pp. 682--713, 2000.
[7] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, Henk van der Vorst: Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide. SIAM Publication, 2000.
[8] William R. Ferng , Wen Wei Lin, Chern-Shuh Wang: The Shift-inverted J-Lanczos Algorithm for the Numerical Solutions of Large Sparse Algebraic Riccati Equations. Comp. Math. Appl., Vol. 33, No. 10 (1997), pp. 23--40.
[9] Roland W. Freund: Lanczos-Type Algorithms for Structured Non-Hermitian Eigenvalue Problems. Proceedings of the Cornelius Lanczos International Centenary Conference, Ed. J. D. Brown, M. T. Chu, D. C. Ellison, and R. J. Plemmons, pp. 243--245, SIAM, 1994.
[10] Volker Mehrmann, Tsung-Min Hwang, Wen-Wei Lin: Numerical solution of quadratic eigenvalue problems for damped gyroscopic systems. SIAM Sci. Comp., to appear, 2002.
[11] Volker Mehrmann, David Watkins: Structure Preserving Methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM Sci. Comp., 22, p.1905-1925, 2001.
[12] Volker Mehrmann, David Watkins: Polynomial eigenvalue problems with Hamiltonian structure. ETNA, 13, p.106--118, 2002.
[13] David Watkins: On Hamiltonian and Symplectic Lanczos Processes. Linear Algebra Appl.
[14] David Watkins: Fundamentals of Matrix Computations. A Wiley-Interscience Publication. John Wiley & sons, inc.


Im Projekt entstandene Literatur

Zur Beschreibung des DFG-Projektes Numerische Lösung von quadratischen Operator-Eigenwertproblemen aus der Kontinuumsmechanik

Stand 19.05.2006, Kontakt