Modulhandbuch des Studiengangs

Bauingenieurwesen und Umweltwissenschaften
(Bachelor of Science)

an der
Universität der Bundeswehr München

(Version 2019)

Stand: 09. Juli 2019
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2900</td>
<td>Bachelorarbeit BAU</td>
<td>30</td>
</tr>
<tr>
<td>1001</td>
<td>Voruniversitäre Leistungen / Sprachausbildung für BAU</td>
<td>213</td>
</tr>
</tbody>
</table>

Pflichtmodule KI, UI und VI - BAU 2019

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2894</td>
<td>Baukonstruktion und Bauphysik</td>
<td>31</td>
</tr>
<tr>
<td>2902</td>
<td>Baumechanik I.</td>
<td>33</td>
</tr>
<tr>
<td>2903</td>
<td>Baumechanik II.</td>
<td>35</td>
</tr>
<tr>
<td>2904</td>
<td>Baumechanik III.</td>
<td>37</td>
</tr>
<tr>
<td>3780</td>
<td>Einführung FEM.</td>
<td>39</td>
</tr>
<tr>
<td>1397</td>
<td>Einführung in das Wasserwesen</td>
<td>41</td>
</tr>
<tr>
<td>2507</td>
<td>Entwerfen und Konstruieren</td>
<td>43</td>
</tr>
<tr>
<td>3013</td>
<td>Geologie, Werkstoffe und Bauchemie</td>
<td>45</td>
</tr>
<tr>
<td>3019</td>
<td>Grundlagen der Geodäsie</td>
<td>47</td>
</tr>
<tr>
<td>1290</td>
<td>Grundlagen der Geotechnik</td>
<td>49</td>
</tr>
<tr>
<td>2509</td>
<td>Grundlagen des Baubetriebs</td>
<td>57</td>
</tr>
<tr>
<td>1396</td>
<td>Grundlagen des Konstruktiven Ingenieurbau</td>
<td>59</td>
</tr>
<tr>
<td>3800</td>
<td>Grundlagen des Verkehrswesens und der Raumplanung I</td>
<td>61</td>
</tr>
<tr>
<td>3801</td>
<td>Grundlagen des Verkehrswesens und der Raumplanung II</td>
<td>63</td>
</tr>
<tr>
<td>1291</td>
<td>Mathematik I.</td>
<td>137</td>
</tr>
<tr>
<td>1292</td>
<td>Mathematik II.</td>
<td>139</td>
</tr>
<tr>
<td>1293</td>
<td>Mathematik III.</td>
<td>141</td>
</tr>
<tr>
<td>3799</td>
<td>Programmieren und Statistik</td>
<td>155</td>
</tr>
<tr>
<td>3618</td>
<td>Statik I.</td>
<td>173</td>
</tr>
<tr>
<td>3619</td>
<td>Statik II.</td>
<td>175</td>
</tr>
<tr>
<td>3021</td>
<td>Werkstoffe und Bauchemie</td>
<td>215</td>
</tr>
</tbody>
</table>

Pflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3746</td>
<td>Holzbau</td>
<td>71</td>
</tr>
<tr>
<td>3027</td>
<td>Interdisziplinäres Projekt KI</td>
<td>95</td>
</tr>
<tr>
<td>1402</td>
<td>Massivbau</td>
<td>125</td>
</tr>
<tr>
<td>3747</td>
<td>Multimodale Verkehrssysteme</td>
<td>149</td>
</tr>
<tr>
<td>3745</td>
<td>Stahlbau</td>
<td>167</td>
</tr>
<tr>
<td>1403</td>
<td>Vertiefte Kapitel der Statik und Numerik</td>
<td>207</td>
</tr>
</tbody>
</table>

Pflichtmodule UI - BAU 2019

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3748</td>
<td>Grundlagen der Wasser- und Abfalltechnik</td>
<td>51</td>
</tr>
<tr>
<td>3749</td>
<td>Hydromechanik und Wasserbau</td>
<td>86</td>
</tr>
<tr>
<td>3023</td>
<td>Interdisziplinäres Projekt UI</td>
<td>101</td>
</tr>
<tr>
<td>1406</td>
<td>Umweltrecht, -planung und -prüfung</td>
<td>193</td>
</tr>
</tbody>
</table>
Wahlpflichtmodule KI - BAU 2019

3751 Abwasser als Ressource .. 6
2910 Anwendungen der Geodäsie ... 12
3645 Ausgewählte Kapitel der Verkehrsplanung 18
3646 Ausgewählte Kapitel der Verkehrstechnik 24
3748 Grundlagen der Wasser- und Abfalltechnik 53
3581 Grundlagen des wissenschaftlichen Arbeitens in den Ingenieurwissenschaften ... 65
2940 Hydromechanik für ME ... 77
3749 Hydromechanik und Wasserbau 89
3023 Interdisziplinäres Projekt UI ... 103
3750 Interdisziplinäres Projekt Verkehrsentwurf 109
3664 Kampfmittelräumung und militärische Altlasten 113
3576 Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME ... 119
2908 Materialmodellierung .. 131
3789 Modellierung von Unsicherheiten und Daten 143
2946 Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften I .. 161
2947 Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften II .. 164
3580 Studienarbeit ME-BAU .. 181
2909 Tragwerksschwingungen und Erschütterungsschutz ... 187
1406 Umweltrecht, -planung und -prüfung 197
2941 Verkehrsströme ... 199
1405 Verkehrstechnik, -simulation und -leitsysteme 205
3452 Werkstoffe und Bauchemie II für ME 217

Wahlpflichtmodule UI - BAU 2019

3751 Abwasser als Ressource .. 8
2910 Anwendungen der Geodäsie ... 14
3645 Ausgewählte Kapitel der Verkehrsplanung 20
3646 Ausgewählte Kapitel der Verkehrstechnik 26
3581 Grundlagen des wissenschaftlichen Arbeitens in den Ingenieurwissenschaften ... 67
3746 Holzbau ... 73
2940 Hydromechanik für ME ... 80
Wahlpflichtmodule VI - BAU 2019

3751 Abwasser als Ressource ... 10
2910 Anwendungen der Geodäsie .. 16
3645 Ausgewählte Kapitel der Verkehrsplanung 22
3646 Ausgewählte Kapitel der Verkehrstechnik 28
3748 Grundlagen der Wasser- und Abfalltechnik 55
3581 Grundlagen des wissenschaftlichen Arbeitens in den Ingenieurwissenschaften ... 69
3746 Holzbau ... 75
2940 Hydromechanik für ME ... 83
3749 Hydromechanik und Wasserbau ... 92
3027 Interdisziplinäres Projekt KI .. 99
3023 Interdisziplinäres Projekt UI .. 105
3664 Kampfmittelräumung und militärische Altlasten 117
3576 Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME ... 123
2908 Materialmodellierung .. 135
3789 Modellierung von Unsicherheiten und Daten 147
2946 Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften I ... 163
2947 Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften II ... 166
2943 Statik III und Materialtheorie .. 179
3580 Studienarbeit ME-BAU .. 185
2909 Tragwerksschwingungen und Erschütterungsschutz 191
1403 Vertiefte Kapitel der Statik und Numerik 211
3452 Werkstoffe und Bauchemie II für ME ... 219

Studium+ Bachelor
Modulname: Abwasser als Ressource

Konto | Wahlpflichtmodule KI - BAU 2019

Modulverantwortliche/r | Modultyp | Empf. Trimester
Univ.-Prof. Dr.-Ing. habil. Christian Schaum | Wahlpflicht | 6

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>36</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37511</td>
<td>VL</td>
<td>Wasser als Ressource</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>37512</td>
<td>VL</td>
<td>Klärschlamm als Ressource</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Qualifikationsziele

In dem Modul werden die verschiedenen Aspekte einer zukunftsfähigen Abwasserbehandlung vermittelt, mit Fokus auf den Gesundheits-, Gewässer- und Ressourcenschutz. Die Studierenden bekommen Kenntnisse zur Wasserwiederverwendung und zur Nutzung der Ressource Klärschlamm (energetisch sowie als Phosphorressource).

Inhalt

Wasser als Ressource (Prof. Dr. Schaum):

- Gesundheits-, Gewässer- und Ressourcenschutz in der Abwasserbehandlung
- Abwasser als Wasserressource in der Landwirtschaft, Industrie und als Trinkwasser (Wasserwiederverwendung) im nationalen und internationalen Kontext

Klärschlamm als Ressource (Prof. Dr. Schaum):

- Klärschlamanfall und –zusammensetzung,
- Wertstoffe im Klärschlamm
- Verfahren zur Klärschlammbehandlung und -verwertung
- Energetische Verwertung von Klärschlamm,
- anaerobe und thermische Klärschlammbehandlung
- Phosphorrückgewinnung aus Klärschlamm

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion durchgeführt werden.

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 30 Minuten.
<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.</td>
</tr>
<tr>
<td>Als Startzeitpunkt für das Modul ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Abwasser als Ressource
Modulnummer: 3751

| Konto | Wahlpflichtmodule UI - BAU 2019 |

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. habil. Christian Schaum</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>36</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37511</td>
<td>VL</td>
<td>Wasser als Ressource</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>37512</td>
<td>VL</td>
<td>Klärschlamm als Ressource</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

<table>
<thead>
<tr>
<th>Qualifikationsziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>In dem Modul werden die verschiedenen Aspekte einer zukunftsfähigen Abwasserbehandlung vermittelt, mit Fokus auf den Gesundheits-, Gewässer- und Ressourcenschutz. Die Studierenden bekommen Kenntnisse zur Wasserwiederverwendung und zur Nutzung der Ressource Klärschlamm (energetisch sowie als Phosphorressource).</td>
</tr>
</tbody>
</table>

Inhalt

Wasser als Ressource (Prof. Dr. Schaum):

- Gesundheits-, Gewässer- und Ressourcenschutz in der Abwasserbehandlung
- Abwasser als Wasserressource in der Landwirtschaft, Industrie und als Trinkwasser (Wasserwiederverwendung) im nationalen und internationalen Kontext

Klärschlamm als Ressource (Prof. Dr. Schaum):

- Klärschlammanfall und –zusammensetzung,
- Wertstoffe im Klärschlamm
- Verfahren zur Klärschlammbehandlung und -verwertung
- Energetische Verwertung von Klärschlamm,
- anaerobe und thermische Klärschlammbehandlung
- Phosphorrückgewinnung aus Klärschlamm

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion durchgeführt werden.

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 30 Minuten.
Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt für das Modul ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Abwasser als Ressource

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abwasser als Ressource</td>
<td>3751</td>
</tr>
</tbody>
</table>

Konto | Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r | Modultyp | Empf. Trimester |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. habil. Christian Schaum</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h) | **Präsenzzeit in (h)** | **Selbststudium in (h)** | **ECTS-Punkte**
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>36</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37511</td>
<td>VL</td>
<td>Wasser als Ressource</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>37512</td>
<td>VL</td>
<td>Klärschlamm als Ressource</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Qualifikationsziele

In dem Modul werden die verschiedenen Aspekte einer zukunftsfähigen Abwasserbehandlung vermittelt, mit Fokus auf den Gesundheits-, Gewässer- und Ressourcenschutz. Die Studierenden bekommen Kenntnisse zur Wasserwiederverwendung und zur Nutzung der Ressource Klärschlamm (energetisch sowie als Phosphorressource).

Inhalt

Wasser als Ressource (Prof. Dr. Schaum):

- Gesundheits-, Gewässer- und Ressourcenschutz in der Abwasserbehandlung
- Abwasser als Wasserressource in der Landwirtschaft, Industrie und als Trinkwasser (Wasserwiederverwendung) im nationalen und internationalen Kontext

Klärschlamm als Ressource (Prof. Dr. Schaum):

- Klärschlammanfall und –zusammensetzung,
- Wertstoffe im Klärschlamm
- Verfahren zur Klärschlammbehandlung und -verwertung
- Energetische Verwertung von Klärschlamm,
- anaerobe und thermische Klärschlammbehandlung
- Phosphorrückgewinnung aus Klärschlamm

Es soll – sofern die Möglichkeit gegeben ist – eine Fachexkursion durchgeführt werden.

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 30 Minuten.
Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.
Als Startzeitpunkt für das Modul ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Anwendungen der Geodäsie

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>2910</th>
</tr>
</thead>
</table>

Konto: Wahlpflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Otto Heunecke</td>
<td>Wahlpflicht</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29101</td>
<td>VL</td>
<td>Anwendungen der Geodäsie</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>29102</td>
<td>UE</td>
<td>Anwendungen der Geodäsie</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

- Allgemeine Kenntnisse in Mathematik und Physik
- Kenntnisse aus dem Modul "Grundlagen der Geodäsie"

Qualifikationsziele

Inhalt

Die Vorlesung vermittelt folgende Inhalte:

- Einführung "Monitoring"
- Geodätische Messverfahren bei Überwachungsmessungen
- Anlage von Überwachungsnetzen
- Auswertung von Zeitreihen
- Strain- und Stressanalyse
- Integrierte Auswerteansätze
- Überwachung geotechnischer Objekte
- Überwachung von Brücken
- Überwachung von Stauanlagen

Begleitend finden Messübungen in Kleingruppen (4-5 Studierende, Betreuung durch wiss. Mitarbeiter, Institut für Geodäsie) statt zu den Themen:

- Umgang mit speziellen geodätischen Messystemen
- Umgang mit motorisierten Tachymetern

Stand: 09. Juli 2019
<table>
<thead>
<tr>
<th>Modulname: Anwendungen der Geodäsie</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aufbau von Geosensornetzen</td>
</tr>
<tr>
<td>• Schwingungsmessungen mittels Lasertracking</td>
</tr>
<tr>
<td>Die Ausarbeitungen zu den Messübungen finden gruppenweise statt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mündliche Prüfung 20 Minuten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieses Modul liefert u.a. Grundlagen für die Anwendungen des Baubetriebs, des Tunnelbaus und der Bauablaufplanung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulname: Anwendungen der Geodäsie

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Konto</th>
</tr>
</thead>
<tbody>
<tr>
<td>2910</td>
<td>Wahlpflichtmodule UI - BAU 2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Otto Heunecke</td>
<td>Wahlpflicht</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29101</td>
<td>VL</td>
<td>Anwendungen der Geodäsie</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>29102</td>
<td>UE</td>
<td>Anwendungen der Geodäsie</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 4

Empfohlene Voraussetzungen

- Allgemeine Kenntnisse in Mathematik und Physik
- Kenntnisse aus dem Modul "Grundlagen der Geodäsie"

Qualifikationsziele

Inhalt

Die Vorlesung vermittelt folgende Inhalte:

- Einführung "Monitoring"
- Geodätische Messverfahren bei Überwachungsmessungen
- Anlage von Überwachungsnetzen
- Auswertung von Zeitreihen
- Strain- und Stressanalyse
- Integrierte Auswerteansätze
- Überwachung geotechnischer Objekte
- Überwachung von Brücken
- Überwachung von Stauanlagen

Begleitend finden Messübungen in Kleingruppen (4-5 Studierende, Betreuung durch wiss. Mitarbeiter, Institut für Geodäsie) statt zu den Themen:

- Umgang mit speziellen geodätischen Messsystemen
- Umgang mit motorisierten Tachymetern

Stand: 09. Juli 2019
Universität der Bundeswehr München
<table>
<thead>
<tr>
<th>Modulname: Anwendungen der Geodäsie</th>
</tr>
</thead>
</table>

- Aufbau von Geosensornetzen
- Schwingungsmessungen mittels Lasertracking

Die Ausarbeitungen zu den Messübungen finden gruppenweise statt.

Leistungsnachweis
Mündliche Prüfung 20 Minuten.

Verwendbarkeit
Dieses Modul liefert u.a. Grundlagen für die Anwendungen des Baubetriebs, des Tunnelbaus und der Bauablaufplanung.

Dauer und Häufigkeit
Modulname:

<table>
<thead>
<tr>
<th>Anwendungen der Geodäsie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulnummer</td>
</tr>
<tr>
<td>2910</td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r:

<table>
<thead>
<tr>
<th>Univ.-Prof. Dr.-Ing. Otto Heunecke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modultyp</td>
</tr>
<tr>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>Empf. Trimester</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Workload in (h):

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29101</td>
<td>VL</td>
<td>Anwendungen der Geodäsie</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>29102</td>
<td>UE</td>
<td>Anwendungen der Geodäsie</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

- Allgemeine Kenntnisse in Mathematik und Physik
- Kenntnisse aus dem Modul "Grundlagen der Geodäsie"

Qualifikationsziele

Inhalt

Die Vorlesung vermittelt folgende Inhalte:

- Einführung "Monitoring"
- Geodätische Messverfahren bei Überwachungsmessungen
- Anlage von Überwachungsnetzen
- Auswertung von Zeitreihen
- Strain- und Stressanalyse
- Integrierte Auswerteansätze
- Überwachung geotechnischer Objekte
- Überwachung von Brücken
- Überwachung von Stauanlagen

Begleitend finden Messübungen in Kleingruppen (4-5 Studierende, Betreuung durch wiss. Mitarbeiter, Institut für Geodäsie) statt zu den Themen:

- Umgang mit speziellen geodätischen Messsystemen
- Umgang mit motorisierten Tachymetern

Stand: 09. Juli 2019

Universität der Bundeswehr München
<table>
<thead>
<tr>
<th>Modulname: Anwendungen der Geodäsie</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aufbau von Geosensornetzen</td>
</tr>
<tr>
<td>• Schwingungsmessungen mittels Lasertracking</td>
</tr>
</tbody>
</table>

Die Ausarbeitungen zu den Messübungen finden gruppenweise statt.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mündliche Prüfung 20 Minuten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieses Modul liefert u.a. Grundlagen für die Anwendungen des Baubetriebs, des Tunnelbaus und der Bauablaufplanung.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Qualifikationsziele

Inhalt

Straßenentwurf II (Prof. Hoffmann)
- Begriffe und Systematik von Knotenpunkten
- Entwurfskriterien
- Plangleiche Kontenpunkte
- Teilplanfreie Knotenpunktformen
- Planfreie Knotenpunktformen
- Leistungsfähigkeit von Knotenpunktsystemen
- Verkehrssicherheit
- Örtliche Unfalluntersuchung
- Unfalltypenkarten
- Unfallhäufungen
- Unfallanalyse
- Maßnahmenfindung

Praktikum Straßenbau (Dr. Kienlein)
- Asphalttechnologie
- Bindemitteluntersuchungen
| Herstellung von Asphaltprobekörpern (Bestimmung der Marshallstabilität) |
| Extraktion von Asphaltproben |
| Bestimmung des Zertrümmerungswiderstandes von Gesteinen |
| Spurbildungstest |
| Straßenzustandserfassung (Quer- und Längsebenheit, Griffigkeitsmessung etc.) |

Umweltbelange in der Verkehrsplanung (Prof. Jacoby)

- Gesundheit
- Energie
- Klima
- Fläche, Boden und Wasser
- Natur und Landschaft

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 15 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.
Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname

Ausgewählte Kapitel der Verkehrsplanung

| Modulnummer | 3645 |

Konto

Wahlpflichtmodule UI - BAU 2019

Modulverantwortliche/r

Dr.-Ing. Edgar Kienlein

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte

| 90 | 48 | 42 | 3 |

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14082</td>
<td>VL</td>
<td>Straßenentwurf II</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14083</td>
<td>P</td>
<td>Praktikum Straßenbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>36451</td>
<td>VL</td>
<td>Umweltbelange in der Verkehrsplanung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

| 4 |

Qualifikationsziele

Inhalt

Straßenentwurf II (Prof. Hoffmann)

- Begriffe und Systematik von Knotenpunkten
- Entwurfskriterien
- Plangleiche Kontenpunkte
- Teilplanfreie Knotenpunkformen
- Planfreie Knotenpunkformen
- Leistungsfähigkeit von Knotenpunktsystemen
- Verkehrssicherheit
- Ortliche Unfalluntersuchung
- Unfalltypenkarten
- Unfallhäufungen
- Unfallanalyse
- Maßnahmenfindung

Praktikum Straßenbau (Dr. Kienlein)

- Asphalttechnologie
- Bindemitteluntersuchungen
• Herstellung von Asphaltprobekörpern (Bestimmung der Marshallstabilität)
• Extraktion von Asphaltproben
• Bestimmung des Zertrümmerungswiderstandes von Gesteinen
• Spurbildungstest
• Straßenzustandserfassung (Quer- und Längsebenheit, Griffigkeitsmessung etc.)

Umweltbelange in der Verkehrsplanung (Prof. Jacoby)

• Gesundheit
• Energie
• Klima
• Fläche, Boden und Wasser
• Natur und Landschaft

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 15 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Ausgewählte Kapitel der Verkehrsplanung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgewählte Kapitel der Verkehrsplanung</td>
<td>3645</td>
</tr>
</tbody>
</table>

Konto | Wahlpflichtmodule VI - BAU 2019 |

Modulverantwortliche/r | Modultyp | Empf. Trimester |
Dr.-Ing. Edgar Kienlein | Wahlpflicht | 6 |

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14082</td>
<td>VL</td>
<td>Straßenentwurf II</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14083</td>
<td>P</td>
<td>Praktikum Straßenbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>36451</td>
<td>VL</td>
<td>Umweltbelange in der Verkehrsplanung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 4

Qualifikationsziele

Inhalt

Straßenentwurf II (Prof. Hoffmann)

- Begriffe und Systematik von Knotenpunkten
- Entwurfskriterien
- Plangleiche Knotenpunkte
- Teilplanfreie Knotenpunktformen
- Planfreie Knotenpunktformen
- Leistungsfähigkeit von Knotenpunktsystemen
- Verkehrssicherheit
- Örtliche Unfalluntersuchung
- Unfalltypenkarten
- Unfallhäufungen
- Unfallanalyse
- Maßnahmenfindung

Praktikum Straßenbau (Dr. Kienlein)

- Asphalttechnologie
- Bindemitteluntersuchungen

Stand: 09. Juli 2019

Universität der Bundeswehr München | Seite 22 von 230
- Herstellung von Asphaltprobekörpern (Bestimmung der Marshallstabilität)
- Extraktion von Asphaltproben
- Bestimmung des Zertrümmerungswiderstandes von Gesteinen
- Spurbildungstest
- Straßenzustandsersfassung (Quer- und Längsebenheit, Griffigkeitsmessung etc.)

Umweltbelange in der Verkehrsplanung (Prof. Jacoby)

- Gesundheit
- Energie
- Klima
- Fläche, Boden und Wasser
- Natur und Landschaft

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 15 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Ausgewählte Kapitel der Verkehrstechnik

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>3646</th>
</tr>
</thead>
</table>

Konto: Wahlpflichtmodule KI - BAU 2019

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Klaus Bogenberger</td>
<td>Wahlpflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14081</td>
<td>VL</td>
<td>Intelligente Fahrzeuge</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14084</td>
<td>P</td>
<td>Praktikum Verkehrstechnik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Inhalt

Intelligente Fahrzeuge (Prof. Bogenberger)
- Fahrerassistenzsysteme (ACC, ACC StopGo, Spurhaltesysteme)
- Elektroantrieb, Hybridantrieb
- Wasserstoffmotor (Wasserstoffverbrennungsmotor, Wasserstoffgewinnung und Verteilung)
- Moderne Diesel- und Benzinmotoren (Injektoren und Turbolader)
- Getriebe und Fahrwerkregelsysteme (Automatikgetriebe, DSC ...)
- Kooperative Verkehrssysteme
- Navigationssysteme
- Überblick über Forschungshistorie (von den 1950er Jahren über PROMETHEUS bis heute)
- Dienstleistungen rund ums Fahrzeug (CarSharing etc.)

Praktikum Verkehrstechnik (Prof. Bogenberger)
- Planung, Durchführung und Auswertung von Verkehrserhebungen und Befragungen
- Verkehrsbeobachtungen im nmIV, mlV und ÖPNV
- Kordonzählungen
- Messfahrten zur Ermittlung des Treibstoffverbrauchs, Reisezeiten etc.
Leistungsnachweis

| Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 15 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum. |

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Mit freundlichen Grüßen,

[Name]

[Adresse]

[Stadt, Postleitzahl, Land]

Zugleich:

[Name]

[Adresse]

[Stadt, Postleitzahl, Land]

Geben Sie den Text inPlain Format wieder:

Modulname: Ausgewählte Kapitel der Verkehrstechnik

<table>
<thead>
<tr>
<th>Konto</th>
<th>Wahlpflichtmodule UI - BAU 2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Klaus Bogenberger</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14081</td>
<td>VL</td>
<td>Intelligente Fahrzeuge</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14084</td>
<td>P</td>
<td>Praktikum Verkehrstechnik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 4

Qualifikationsziele

Inhalt

Intelligente Fahrzeuge (Prof. Bogenberger)

- Fahrerassistenzsysteme (ACC, ACC StopGo, Spurhaltesysteme)
- Elektroantrieb, Hybridantrieb
- Wasserstoffmotor (Wasserstoffverbrennungsmotor, Wasserstoffgewinnung und Verteilung)
- Moderne Diesel- und Benzinmotoren (Injektoren und Turbolader)
- Getriebe und Fahrwerkregelsysteme (Automatikgetriebe, DSC ...)
- Kooperative Verkehrssysteme
- Navigationssysteme
- Überblick über Forschungshistorie (von den 1950er Jahren über PROMETHEUS bis heute)
- Dienstleistungen rund ums Fahrzeug (CarSharing etc.)

Praktikum Verkehrstechnik (Prof. Bogenberger)

- Planung, Durchführung und Auswertung von Verkehrserhebungen und Befragungen
- Verkehrsbeobachtungen im nmlV, mlV und ÖPNV
- Kordonzählungen
- Messfahrten zur Ermittlung des Treibstoffverbrauchs, Reisezeiten etc.
<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 15 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.</td>
</tr>
<tr>
<td>Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Ausgewählte Kapitel der Verkehrstechnik

Konto | Wahlpflichtmodule VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Klaus Bogenberger</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14081</td>
<td>VL</td>
<td>Intelligente Fahrzeuge</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14084</td>
<td>P</td>
<td>Praktikum Verkehrstechnik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Inhalt

Intelligente Fahrzeuge (Prof. Bogenberger)

- Fahrerassistenzsysteme (ACC, ACC StopGo, Spurhaltesysteme)
- Elektroantrieb, Hybridantrieb
- Wasserstoffmotor (Wasserstoffverbrennungsmotor, Wasserstoffgewinnung und Verteilung)
- Moderne Diesel- und Benzinmotoren (Injektoren und Turbolader)
- Getriebe und Fahrwerkregelsysteme (Automatikgetriebe, DSC ...)
- Kooperative Verkehrssysteme
- Navigationssysteme
- Überblick über Forschungshistorie (von den 1950er Jahren über PROMETHEUS bis heute)
- Dienstleistungen rund ums Fahrzeug (CarSharing etc.)

Praktikum Verkehrstechnik (Prof. Bogenberger)

- Planung, Durchführung und Auswertung von Verkehrserhebungen und Befragungen
- Verkehrsbeobachtungen im nmIV, mlV und ÖPNV
- Kordonzählungen
- Messfahrten zur Ermittlung des Treibstoffverbrauchs, Reisezeiten etc.
Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 15 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname

<table>
<thead>
<tr>
<th>Bachelorarbeit BAU</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2900</td>
</tr>
</tbody>
</table>

Konto
- Gesamtkonto - Bachelor BAU 2019

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Workload in (h)

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>60</td>
<td>240</td>
<td>10</td>
</tr>
</tbody>
</table>

Dauer und Häufigkeit

| 1 |
Baukonstruktion und Bauphysik

Modulnummer: 2894

Konto | Pflichtmodule Kl, UI und VI - BAU 2019

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>144</td>
<td>156</td>
<td>10</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>28941</td>
<td>VL</td>
<td>Bauphysik I</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>28942</td>
<td>UE</td>
<td>Bauphysik I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>28943</td>
<td>VL</td>
<td>Baukonstruktion II</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>28944</td>
<td>UE</td>
<td>Baukonstruktion II</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>28945</td>
<td>VL</td>
<td>Bauphysik II</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>28946</td>
<td>UE</td>
<td>Bauphysik II</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>28947</td>
<td>VL</td>
<td>Baukonstruktion III</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td>289481</td>
<td>UE</td>
<td>Baukonstruktion III</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 12

Empfohlene Voraussetzungen

Kenntnisse aus dem Modul "Entwerfen und Konstruieren"

Qualifikationsziele

Inhalt

In diesem Modul erhalten die Studierenden eine grundlegende Einführung

- in die Aussteifung von Bauwerken
• in die Grundlagen der einzelnen Konstruktionselemente, getrennt nach Baustoffen (Holzbau, Mauerwerksbau, Stahlbau, Metallbau, Betonbau, Stahlbetonbau, Spannbetonbau, Verbundbau, Sonderbauweisen)
• in die Bemessung von Mauerwerk
• in Entwurf und Konstruktion der einzelnen Konstruktionsteile des Hochbaus (von Gründung und Keller über Wände und Decken bis zum Dach sowie Bauelementen wie Balkon, Treppe, ...)

Außerdem werden in diesem Modul den Studierenden jeweils gelehrt die physikalischen Grundlagen, baupraktische Umsetzung, Berechnungsverfahren, Regelungen und ihre Anwendung für die Teildisziplinen der Bauphysik

• Wärme
• Feuchte
• Schall
• Brand
• Belichtung und Sonnenschutz
• Klima

Darüber hinaus werden die Interaktionen zwischen Baukonstruktion und Bauphysik dargestellt.

Leistungsnachweis

Schriftliche Prüfung 180 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 45 Minuten und ein unbenoteter Teilnahmeschein (Unbenoteter Teilnahmeschein für die Bearbeitung von Studienarbeiten; diese sind Elemente einer "großen Studienarbeit" in Form einer Bauvorlage für ein individuelles Gebäude)

Verwendbarkeit

Dieses Modul liefert die wesentlichen Grundlagen für:

• Statik
• alle konstruktiven Fächer

Dauer und Häufigkeit

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baumechanik I</td>
<td>2902</td>
</tr>
</tbody>
</table>

Konto | Pflichtmodule KI, UI und VI - BAU 2019

Modulverantwortliche/r	Modultyp	Empf. Trimester
Univ.-Prof. Dr.-Ing. habil. Michael Brünig | Pflicht | 1 |

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>84</td>
<td>66</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29021</td>
<td>VL</td>
<td>Baumechanik I</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td>29022</td>
<td>UE</td>
<td>Baumechanik I</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 7

Empfohlene Voraussetzungen
Keine formalen Voraussetzungen.

Qualifikationsziele

Inhalt
Statik starrer Körper (Prof. Brünig)
- Einführung in die Mechanik
- Kräfte und Momente
- Ebene Stabtragwerke
- Auflagerreaktionen
- Schnittgrößen
- Ebene Fachwerke
- Seiltragwerke
- Räumliche Stabtragwerke
- Reibung

Leistungsnachweis
Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.
<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieses Modul liefert die wesentlichen Grundlagen für:</td>
</tr>
<tr>
<td>• Baumechanik II</td>
</tr>
<tr>
<td>• Statik</td>
</tr>
<tr>
<td>• alle konstruktiven Fächer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Baumechanik II
Modulnummer: 2903

Konto: Pflichtmodule Kl, UI und VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. habil. Michael Brünig</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in (h)
<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>84</td>
<td>66</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29031</td>
<td>VL</td>
<td>Baumechanik II</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td>29032</td>
<td>UE</td>
<td>Baumechanik II</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)
7

Empfohlene Voraussetzungen

Kenntnisse aus dem Modul "Baumechanik I"

Qualifikationsziele

Inhalt

Theorie elastischer Stabtragwerke (Prof. Brünig)
- Einleitung
- Elastischer Fachwerkstab
- Mehrdimensionaler Spannungs- und Verzerrungszustand
- Hauptspannungen
- Elastisches Stoffgesetz
- Festigkeitshypothesen
- Technische Biegetheorie des geraden Balkens
- Flächenwerte
- Normalspannungen
- Schubspannungen des ebenen Balkens
- Differentialgleichung der Biegelinie des schubstarren Balkens
- Differentialgleichung der Biegelinie des schubsteifen Balkens
| • Stabilität zentrisch gedrückter Stäbe
| • Räumliche Stabtragwerke
| • Normal- und Schubspannungen des räumlichen Balkens |

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Dieses Modul liefert die wesentlichen Grundlagen für:
• "Baumechanik III"
• Statik
• alle konstruktiven Fächer

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester. Als Startzeitpunkt ist das Wintertrimester im 1. Studienjahr vorgesehen.
Modulname: Baumechanik III

| Modulnummer | 2904 |

Konto Pflichtmodule Kl, Ul und VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. habil. Michael Brünig</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29041</td>
<td>VL</td>
<td>Baumechanik III</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>29042</td>
<td>UE</td>
<td>Baumechanik III</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 6

Empfohlene Voraussetzungen

Inhalte gemäß "Baumechanik I und II"

Qualifikationsziele

Inhalt

Arbeit und Energie (Prof. Brünig):
- Definitionen
- Prinzip der virtuellen Arbeiten
- Äußere Arbeit und Formänderungsenergie
- Arbeitssätze

Einführung in die Baudynamik (Prof. Brünig):
- Ebene Bewegung eines Massenpunktes
- Aufstellen von Bewegungsgleichungen für den Massenpunkt
- Freie und gedämpfte Schwingungen
- Energie- und Impulssatz
- Bewegung eines starren Körpers
- Erzwungene Schwingungen
- Systeme mit mehreren Freiheitsgrade

Stand: 09. Juli 2019

Universität der Bundeswehr München

Seite 37 von 230
<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieses Modul liefert die wesentlichen Grundlagen für:</td>
</tr>
<tr>
<td>• Statik</td>
</tr>
<tr>
<td>• Dynamik</td>
</tr>
<tr>
<td>• Massivbau</td>
</tr>
<tr>
<td>• Stahlbau</td>
</tr>
<tr>
<td>• Holzbau</td>
</tr>
<tr>
<td>• Verkehrs- und Wasserwesen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.</td>
</tr>
<tr>
<td>Als Startzeitpunkt ist das Frühjahrstrimester im 1. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Einführung FEM

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung FEM</td>
<td>3780</td>
</tr>
</tbody>
</table>

Konto Pflichtmodule Kl, UI und VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. Alexander Popp

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30121</td>
<td>VL</td>
<td>Einführung FEM</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>30122</td>
<td>UE</td>
<td>Einführung FEM</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>(Pflicht und Wahlpflicht)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Grundkenntnisse in den Bereichen Mathematik (v. a. Analysis und lineare Algebra), Baumechanik (v. a. lineare Elastizitätstheorie) sowie erste grundlegende Erfahrungen mit einer beliebigen prozeduralen Programmiersprache (oder mit MATLAB).

Qualifikationsziele

Inhalt

- Modellbildung und computergestützte Simulation im Bauingenieurwesen
- Einführung der FEM für 1D-Stabsysteme
- Wiederholung und Aufbereitung der linearen 2D/3D-Elastizitätstheorie
- Schwache Formulierung und Prinzip der virtuellen Arbeit
- Diskretisierung, Elementmatrizen, Assemblierung und Systemlösung
- Aufbringung von Randbedingungen und Zwangsbedingungen in der FEM
- Numerische Aspekte der FEM (Ansatzfunktionen, numerische Integration, etc.)
- Mathematische Aspekte der FEM (Diskretisierungsfehler, Konvergenz, etc.)
- Locking-Effekte bei der verschiebungsbasierten FEM
- Ausblick auf gemischte / hybride FEM-Formulierungen
Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und findet jeweils im Wintertrimester statt. Als Startzeitpunkt ist das Wintertrimester im 2. Studienjahr vorgesehen.
Modulname: Einführung in das Wasserwesen

Konto | Pflichtmodule Kl, UI und VI - BAU 2019

Modulverantwortliche/r | Modultyp | Empf. Trimester
Univ.-Prof. Dr.-Ing. Andreas Malcherek | Pflicht | 4

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte
240 | 120 | 120 | 8

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13971</td>
<td>VL</td>
<td>Hydraulik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>13972</td>
<td>VL</td>
<td>Grundlagen der Wasserversorgung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13973</td>
<td>UE</td>
<td>Grundlagen der Wasserversorgung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13974</td>
<td>VL</td>
<td>Grundlagen der Abwasserbehandlung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13975</td>
<td>UE</td>
<td>Grundlagen der Abwasserbehandlung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13976</td>
<td>VL</td>
<td>Wasserbau I</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>13977</td>
<td>P</td>
<td>Laborpraktikum</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) | 10

Qualifikationsziele

Inhalt

Hydraulik (Prof. Malcherek):
1. Die Massenerhaltung in der Hydraulik
2. Volumen und Druck
3. Der hydrostatische Druck
4. Die Druckkraft auf beliebige Flächen
5. Kräfte und Impulsbilanz
6. Die Energieerhaltung
7. Die Viskosität der Flüssigkeiten
8. Rohrströmungen
9. Gerinneströmungen
10. Strömen und Schießen
11. Die Strömungskraft auf Körper
Grundlagen der Wasserversorgung (apl. Prof. Dr. Krause):

- Wasservorkommen und Nutzbarkeit
- Anforderung an die Wasserbeschaffenheit
- Trinkwasserschutzgebiete
- Wasserbedarf
- Wassergewinnung, -förderung und -aufbereitung
- Wasserspeicherung
- Wasserverteilung

Grundlagen der Abwasserbehandlung (Prof. Dr. Schaum):

- Abwasseranfall und -beschaffenheit
- Entwässerungsverfahren
- Regenwasserbehandlung
- Mechanische Abwasserbehandlung
- Biologische Abwasserbehandlung
- Klärschlammbehandlung

Wasserbau I (Prof. Malcherek):

1. Armaturen als lokale Verluste
2. Wasserstandsregelung durch Kontrollbauwerke
3. Stauanlagen
4. Wasserkraftanlagen
5. Die instationäre Rohrströmung und das Wasserschloss
6. Die Eulersche Turbinenformel
7. Bemessung von Kreiselpumpen
8. Wasserräder und Steffturbine
9. Turbinenarten
10. Rechen und Tiroler Wehr

Laborpraktikum (Prof. Malcherek):

- Modellgesetze (Vorlesung)
- Messtechnik: Druck, Geschwindigkeit, Durchfluss
- Druckverluste in Rohrleitungen
- Wechselsprung
- Impulssatz

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion im Bereich Grundlagen der Wasserversorgung und/oder Grundlagen der Abwasserbehandlung stattfinden.

Leistungsnachweis

Schriftliche Prüfung 180 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

<table>
<thead>
<tr>
<th>Modulnumber</th>
<th>Modulname: Entwerfen und Konstruieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>2507</td>
<td></td>
</tr>
</tbody>
</table>

Konto: Pflichtmodule Kl, Ul und VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Geralt Siebert</td>
<td>Pflicht</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>84</td>
<td>66</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25071</td>
<td>VL</td>
<td>Konstruktive Geometrie</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>25072</td>
<td>VÜ</td>
<td>Darstellungstechnik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>25073</td>
<td>VÜ</td>
<td>Konstruktives Zeichnen, CAD</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>25074</td>
<td>VL</td>
<td>Baukonstruktion I</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>25075</td>
<td>UE</td>
<td>Baukonstruktion I</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 7

Empfohlene Voraussetzungen

Keine formalen Voraussetzungen.

Qualifikationsziele

Außerdem haben die Studierenden die Fähigkeit erlernt, Pläne und technische Zeichnungen zu lesen und mit Hilfe von CAD selbst zu erstellen. Durch Bearbeitung der Studienarbeiten werden erste Teile einer Bauvorlage (Zeichnungen, Lastannahmen) erarbeitet, die als Elemente einer größeren Aufgabenstellung (Bauvorlage für ein individuelles Musterhaus) das Verständnis für Interaktion der einzelnen Teildisziplinen im Studium und der späteren Tätigkeit als Ingenieur fördern.

Inhalt

In diesem Modul erhalten die Studierenden eine grundlegende Einführung

- in die zeichnerische Darstellung technischer Inhalte in Form von Plänen (Konstruktive Geometrie, Darstellungstechnik und Konstruktives Zeichnen/CAD)
- in das Aufgabenfeld des konstruktiv und planerisch tätigen Bauingenieurs (Ablauf einer Baumaßnahme, am Bau Beteiligte, rechtliche Randbedingungen)
- in die Grundlagen der Sicherheits- und Bemessungskonzepte
- zu Einwirkungen auf Bauwerke (Lastannahmen)
Modulname: Entwerfen und Konstruieren

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 60 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 20 Minuten und ein unbenoteter Teilnahmeschein (Unbenoteter Teilnahmeschein für die Bearbeitung von Studienarbeiten; diese sind Elemente einer "großen Studienarbeit" in Form einer Bauvorlage für ein individuelles Gebäude).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieses Modul liefert die wesentlichen Grundlagen für:</td>
</tr>
<tr>
<td>• "Baukonstruktion und Bauphysik"</td>
</tr>
<tr>
<td>• alle konstruktiven Fächer</td>
</tr>
<tr>
<td>• Statik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Geologie, Werkstoffe und Bauchemie

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3013</td>
<td>3013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konto</th>
<th>Pflichtmodule Kl, UI und VI - BAU 2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Karl-Christian Thienel</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>96</td>
<td>114</td>
<td>7</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30131</td>
<td>VL</td>
<td>Grundlagen der Geologie</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>30132</td>
<td>P</td>
<td>Chemie und Eigenschaften mineralischer Baustoff</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>30133</td>
<td>VL</td>
<td>Chemie und Eigenschaften mineralischer Baustoff</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Inhalte gemäß dem Modul "Werkstoffe und Bauchemie"

Qualifikationsziele

Die Studierenden werden in die Lage versetzt, geologische Grundkenntnisse anzuwenden. Die Studierenden können nach Beendigung des Moduls nicht nur selbständig Gesteine unterscheiden, sondern sie kennen auch deren Herkunft und Entstehung.

Die Studierenden erwerben Kompetenzen mineralische Baustoffe aufgrund ihrer maßgebenden Eigenschaften beurteilen zu können. Sie erhalten einen Überblick über die Eigenschaften bituminöser Baustoffe und sind in Grundzügen über das Baustoffrecycling informiert. Die Studierenden werden in die Lage versetzt, den geeigneten Werkstoff für die jeweilige Bauaufgabe, auch unter Berücksichtigung der Umgebungsbedingungen, festzulegen.

Inhalt

Grundlagen der Geologie (Dr. rer. nat. Murr):

- Allgemeine Geologie; Entwicklungsgeschichte der Erde, Geodynamik und Plattentektonik; Gebirgsbildung; Historische Geologie; Mineralogie; Petrographie der Magmatite; Exogene Vorgänge und Kräfte; Diagenese und Einteilung der Sedimentgesteine; Gesteinsmetamorphose
- Angewandte Geologie; Geologische Karten; Ingenieurgeologie; Hydrogeologie

Chemie und Eigenschaften mineralischer Baustoffe (Prof. Thienel)
| • Chemie mineralischer Baustoffe, Mineralische Bindemittel; Künstliche Steine; Mörtel; Gesteinskörnung |
| • Begriffe und Einteilung; Expositionsklassen; Frischbeton - Zusammensetzung, Verarbeitung und Konsistenz, Eigenschaften und Prüfung; Betonzusatzmittel; Junger Beton; Nachbehandlung; Einflüsse auf die Festigkeit; Verformungseigenschaften; Dauerhaftigkeit; Betonkorrosion; Leichtbeton; Siebanalyse; Prüfverfahren |
| • Recycling organischer, metallischer und mineralischer Baustoffe |

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Leistungsnachweis

| Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 35 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum. |

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Massivbau
- Stahlbau
- Holzbau
- Hoch- und Ingenieurbau
- Baubetrieb
- Tragwerksplanung
- Umwelttechnik
- Straßenbau
- Glasbau
- Bauphysik

Dauer und Häufigkeit

Modulname

Grundlagen der Geodäsie

<table>
<thead>
<tr>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3019</td>
</tr>
</tbody>
</table>

Konto

Pflichtmodule Kl, Ul und VI - BAU 2019

Modulverantwortliche/r

Univ.-Prof. Dr.-Ing. Otto Heunecke

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Workload in (h)

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30191</td>
<td>VL</td>
<td>Grundlagen der Geodäsie</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td>30192</td>
<td>UE</td>
<td>Grundlagen der Geodäsie</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Allgemeine Grundkenntnisse in Mathematik und Physik

Qualifikationsziele

Inhalt

Die Vorlesung (Prof. Heunecke) vermittelt folgende Inhalte:

- Einführung "Grundlagen der Geodäsie"
- Erd- und Landesvermessung
- Einfache Lagevermessungen
- Nivellement
- Messungen mit dem Theodolit
- Elektrooptische Tachymetrie
- GNSS Positionierung
- Räumliche und ebene Koordinatensysteme
- Ebene Koordinatenberechnungen
- Topographische Aufnahme
Modulname: Grundlagen der Geodäsie

- Flächen- und Mengenermittlung
- Trassierung und Absteckung
- Statistik und Ausgleichungsrechnung
- Geoinformationssysteme
- Photogrammetrie und Fernerkundung
- Öffentliches Vermessungswesen

Zu ausgewählten Kapiteln der Vorlesung werden Hausübungen ausgeteilt, anhand derer die gezielte Nachbearbeitung der Vorlesungsinhalte ermöglicht wird. Inhalte der Messübungen (in Kleingruppen) sind:

- Orthogonalaufnahme und geometrisches Nivellement
- Umgang mit dem Tachymeter
- Freie Stationierung
- Tachymeterzug, RTK-GPS
- Polaraufnahme, CAD gestützte Planerstellung
- Absteckung eines Gebäudes und einer Trasse

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten. Hierzu sind keine Hilfsmittel - außer Taschenrechner - erlaubt

Verwendbarkeit

Dieses Modul liefert Grundlagen für weitere Geodäsie-Module und Baubetrieb.

Dauer und Häufigkeit

Modulname: Grundlagen der Geotechnik

Konto: Pflichtmodule Kl, Ul und VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. Conrad Boley

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Conrad Boley</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>144</td>
<td>96</td>
<td>8</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12901</td>
<td>VÜ</td>
<td>Geotechnik I</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>12902</td>
<td>P</td>
<td>Goetechnik-Praktikum</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>12903</td>
<td>V/Ü/P</td>
<td>Geotechnik II</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 12

Empfohlene Voraussetzungen

Keine formalen Voraussetzungen.

Qualifikationsziele

Die Studierenden besitzen das Verständnis für die Grundzüge der theoretischen Bodenmechanik. Sie erlernen und beherrschen die grundlegenden Berechnungsmethoden der Geotechnik. Die Studierenden sind befähigt selbständig Labor- und Feldversuche zur Bestimmung der Bodeneigenschaften durchzuführen. Weiterhin beherrschen sie die Bemessungsmethoden für geotechnische Bauwerke.

Inhalt

Geotechnik I (Prof. Boley):

- Grundlagen der Bodenphysik und der Baugrunderkundung
- Klassifizierung und Benennung von Böden
- Grundlagen der Grundwasserströmung
- Spannungen infolge Eigengewicht und flächenhafter Auflasten
- Grundlagen der Setzungsberechnung
- Scherfestigkeit von Böden
- Grundlagen der Erddrucktheorie
- Eindimensionale Konsolidationstheorie

Geotechnik II (Prof. Boley):

- Böschungs- und Geländebruchberechnungen
- Bemessung von Baugrubenumschließungen und Stützbauwerken
- Geotechnische Bemessung von Flachgründungen
- Grundlagen der Tiefgründung von Bauwerken (Pfähle, etc.)
- Grundbruchberechnungen
• Verankerungen

Praktikum (Prof. Boley):

- Klassifizierung und Ansprache von Böden
- Organoleptische Ansprache von Böden
- Bestimmung des Wassergehaltes
- Sieb- und Schlämmanalyse
- Bestimmung des Kalkgehaltes und des Glühverlustes
- Einführung in die Probennahme
- Erkundungsverfahren
- Versuche zur Bestimmung der Durchlässigkeit von Böden
- Rahmenscherversuche
- Einaxiale Druckversuche und Triaxialversuche
- Bestimmung der Verformungseigenschaften von Böden
- Feldversuche zur Erkundung der Lagerungsdichte (Rammsondierungen)
- Bestimmung der Verformbarkeit von Böden im Feld mittels Plattendruckversuchen

Es sollen - sofern die Möglichkeit gegeben ist - zwei Fachexkursionen (Tagesexkursion) stattfinden.

Leistungsnachweis

Schriftliche Prüfung 180 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 30 Minuten und ein unbenoteter Teilnahmeschein (Unbenoteter Teilnahmeschein für das geotechnische Praktikum).

Verwendbarkeit

Die Inhalte des Moduls bilden die Grundlage für "Geotechnik Vertiefung"

Dauer und Häufigkeit

Das Modul dauert 3 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 2. Studienjahr vorgesehen.
Qualifikationsziele

Inhalt

Grundlagen der Abfalltechnik (Prof. Dr. Schaum und/oder Lehrbeauftragte/r):
- Abfallarten und -mengen
- Abfallanalysen, Abfallzusammensetzung
- Abfallsammlung und -transport
- Abfallwirtschaftliche Vorgaben und Konzepte
- Abfallaufbereitung für die Verwertung und/oder Beseitigung
- Stoffstrombilanzierung

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion durchgeführt werden.

Grundlagen der Luftreinhaltung (Dr. Schlachta):
- Natürliche Quellen von Luftverunreinigungen/
- anthropogene Luftverunreinigungen
- Gesetzliche Grundlagen zur Luftreinhaltung
- Technische Maßnahmen zur Luftreinhaltung an ausgewählten Beispielen
- Wirkungen von Luftverunreinigungen

Grundlagen der Wassertechnologien (apl. Prof. Dr. Krause und Prof. Dr. Schaum)
<table>
<thead>
<tr>
<th>Modulname: Grundlagen der Wasser- und Abfalltechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wasserchemische Grundlagen,</td>
</tr>
<tr>
<td>• Reaktionen und Chemisches Gleichgewicht, Redoxreaktionen</td>
</tr>
<tr>
<td>• Grundtypen von Reaktionsapparaten</td>
</tr>
<tr>
<td>• Herkunft der Inhaltsstoffe des Trinkwassers</td>
</tr>
<tr>
<td>• Löslichkeit und Fällung/Flockung und deren Anwendung in Praxis</td>
</tr>
<tr>
<td>• Membranverfahren und deren Anwendung in Praxis</td>
</tr>
<tr>
<td>• Ionenaustausch und deren Anwendung in Praxis</td>
</tr>
<tr>
<td>• Adsorption und deren Anwendung in Praxis</td>
</tr>
</tbody>
</table>

Leistungsnachweis

Schriftliche Prüfung 100 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Modulname: Grundlagen der Wasser- und Abfalltechnik

Konto: Wahlpflichtmodule KI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. habil. Christian Schaum

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3748</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>60</td>
<td>90</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37481</td>
<td>VL</td>
<td>Grundlagen der Abfalltechnik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37482</td>
<td>VL</td>
<td>Grundlagen der Luftreinhaltung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>37483</td>
<td>VL</td>
<td>Grundlagen der Wassertechnologien</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

| Summe (Pflicht und Wahlpflicht) | 5 |

Qualifikationsziele

Inhalt

Grundlagen der Abfalltechnik (Prof. Dr. Schaum und/oder Lehrbeauftragte/r):

- Abfallarten und -mengen
- Abfallanalysen, Abfallzusammensetzung
- Abfallsammlung und -transport
- Abfallwirtschaftliche Vorgaben und Konzepte
- Abfallaufbereitung für die Verwertung und/oder Beseitigung
- Stoffstrombilanzierung

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion durchgeführt werden.

Grundlagen der Luftreinhaltung (Dr. Schlachta):

- Natürliche Quellen von Luftverunreinigungen/
- anthropogene Luftverunreinigungen
- Gesetzliche Grundlagen zur Luftreinhaltung
- Technische Maßnahmen zur Luftreinhaltung an ausgewählten Beispielen
- Wirkungen von Luftverunreinigungen

**Grundlagen der Wassertechnologien (apl. Prof. Dr. Krause und Prof. Dr. Schaum)
Modulname: Grundlagen der Wasser- und Abfalltechnik

Wasserchemische Grundlagen,	
Reaktionen und Chemisches Gleichgewicht, Redoxreaktionen	
Grundtypen von Reaktionsapparaten	
Herkunft der Inhaltsstoffe des Trinkwassers	
Löslichkeit und Fällung/Flockung und deren Anwendung in Praxis	
Membranverfahren und deren Anwendung in Praxis	
Ionenaustausch und deren Anwendung in Praxis	
Adsorption und deren Anwendung in Praxis	

Leistungsnachweis

| Schriftliche Prüfung 100 Minuten oder mündliche Prüfung 30 Minuten. |

Dauer und Häufigkeit

Modulname: Grundlagen der Wasser- und Abfalltechnik

Modulnummer: 3748

Konto: Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. habil. Christian Schaum

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Werklast in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150 | 60 | 90 | 5

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37481</td>
<td>VL</td>
<td>Grundlagen der Abfalltechnik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37482</td>
<td>VL</td>
<td>Grundlagen der Luftreinhaltung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>37483</td>
<td>VL</td>
<td>Grundlagen der Wassertechnologien</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Inhalt

Grundlagen der Abfalltechnik (Prof. Dr. Schaum und/oder Lehrbeauftragte/r):
- Abfallarten und -mengen
- Abfallanalysen, Abfallzusammensetzung
- Abfallsammlung und -transport
- Abfallwirtschaftliche Vorgaben und Konzepte
- Abfallaufbereitung für die Verwertung und/oder Beseitigung
- Stoffstrombilanzierung

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion durchgeführt werden.

Grundlagen der Luftreinhaltung (Dr. Schlachta):
- Natürliche Quellen von Luftverunreinigungen/
- anthropogene Luftverunreinigungen
- Gesetzliche Grundlagen zur Luftreinhaltung
- Technische Maßnahmen zur Luftreinhaltung an ausgewählten Beispielen
- Wirkungen von Luftverunreinigungen

Grundlagen der Wassertechnologien (apl. Prof. Dr. Krause und Prof. Dr. Schaum)

Stand: 09. Juli 2019

Universität der Bundeswehr München

Seite 55 von 230
Leistungsnachweis

<table>
<thead>
<tr>
<th>Schriftliche Prüfung 100 Minuten oder mündliche Prüfung 30 Minuten.</th>
</tr>
</thead>
</table>

Dauer und Häufigkeit

Modulname: Grundlagen des Baubetriebs

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen des Baubetriebs</td>
<td>2509</td>
</tr>
</tbody>
</table>

Konto Pflichtmodule Kl, Ul und VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Jürgen Schwarz</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>84</td>
<td>96</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25091</td>
<td>VL</td>
<td>Baubetrieb</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>25092</td>
<td>VL</td>
<td>Grundbegriffe Recht und Wirtschaft</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>25093</td>
<td>VL</td>
<td>Kalkulation und Arbeitssicherheit</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Inhalt

Baubetrieb (Prof. Schwarz)
- Überblick über den baubetrieblichen Projektablauf
- Arbeitsvorbereitung als Aufgabe des Bauingenieurs
- Organisation einer Baustelle
- Bauverfahrenstechnik: Allgemeine Grundsätze
- Bauverfahrenstechnik im Erdbau und im Spezialtiefbau
- Bauverfahrenstechnik im Betonbau
- Baustelleneinrichtung: Grundlagen, Einflüsse, Dimensionierung
- Leistungsermittlung, Aufwandswerte
- Terminplanung: Balkenplan, Weg-Zeit-Diagramm

Grundbegriffe Recht und Wirtschaft (Prof. Schwarz)
- Grundlagen: Übersicht über die Rechtsordnung
- Besonderheiten des Baurechts innerhalb der Rechtsvorschriften
- Bauvertragsrecht in Deutschland
- Ingenieurvertragsrecht in Deutschland
- Übersicht über Volkswirtschafts- und Betriebswirtschaftslehre
- Besonderheiten der Baubetriebswirtschaftslehre
- Grundlagen der Buchführung und Bilanzierung
- Grundlagen öffentliches Baurecht
Kalkulation und Arbeitssicherheit (Prof. Schwarz)
- Ermittlung der Einzelkosten der Teilleistungen EKT
- Umlageverfahren
- Nachkalkulation
- Arbeitssicherheit im Baubetrieb

Leistungsnachweis

| Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten. |

Verwendbarkeit

Dieses Modul liefert die wesentlichen Grundlagen für die weiteren Veranstaltungen im Baubetrieb und Projektmanagement.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbstsemester. Als Startzeitpunkt ist das Herbstsemester im 2. Studienjahr vorgesehen.
Modulname: Grundlagen des Konstruktiven Ingenieurbaus

Konto | Pflichtmodule Kl, Ul und VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr. techn. Andreas Taras

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Pflicht</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1396</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13961</td>
<td>VL</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>13962</td>
<td>UE</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) | 6

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Fächern Mechanik, Werkstoffe des Bauwesens und die Grundlagen der Baustatik vorausgesetzt.

Qualifikationsziele

Im Modul Grundlagen des Konstruktiven Ingenieurbaus erwerben die Studierenden grundlegende Kenntnisse zum Tragverhalten einfacher Tragwerke aus Stahl, Holz und Beton und die Fähigkeit, diese selbstständig zu dimensionieren und deren Stabilitätsverhalten zu beurteilen.

Inhalt

Das Lernziel dieses Moduls ist die Vermittlung von werkstoffübergreifendem Grundlagenwissen zum Tragverhalten und zur Bemessung von Bauteilen aus Stahl, Holz und Beton.

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.
Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für den Massivbau sowie den Stahl- und Holzbau.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 2. Studienjahr vorgesehen.
Modulname: Grundlagen des Verkehrswesens und der Raumplanung I

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen des Verkehrswesens und der Raumplanung I</td>
<td>3800</td>
</tr>
</tbody>
</table>

Konto: Pflichtmodule KI, UI und VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Klaus Bogenberger</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13981</td>
<td>VL</td>
<td>Grundlagen des Verkehrswesens</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>13982</td>
<td>UE</td>
<td>Grundlagen des Verkehrswesens</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13983</td>
<td>VL</td>
<td>Grundlagen der Raumordnung und Bauleitplanung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13984</td>
<td>UE</td>
<td>Grundlagen der Raumordnung und Bauleitplanung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 5

Qualifikationsziele

Die Studierenden kennen die Funktionsweisen der wichtigsten Baumaschinen. Durch die Handhabung sollen sie in der Lage sein, Zeitabläufe besser einschätzen zu können.

Inhalt

Grundlagen des Verkehrswesens (Prof. Bogenberger) - HT

- Verkehrserhebung, Verkehrsmessungen, Verkehrsbefragungen
- Verkehrsplanungsprozess
- Einführung in die Verkehrsplanungsmodelle
- 4-Stufen-Modell: Verkehrserzeugung, Verkehrsträger, Verkehrsmittelwahl, Routenwahl (z.B. mit Raum-Aggregat-Modell, Gravitationsansätze)
- Quelle-Ziel-Schätzverfahren
- Verkehrsnetzplanung: Fußgänger, Rad, ÖPNV, motorisierter Individualverkehr
- Makroskopische, mikroskopische Verkehrs kenngrößen
- Fundamentalsdiagram

Grundlagen der Raumordnung und Bauleitplanung (Prof. Jacoby) - HT
- System und Rechtsgrundlagen der Raumplanung
- Planungsorganisation, -prozesse und -verfahren
- Entwicklung der Siedlungs-, Freiraum- und Infrastruktur
- Grundzüge der Mobilitätsentwicklung
- Aufgaben und Instrumente der Raumordnung (Landes- und Regionalplanung)
- Aufgaben und Instrumente der Bauleitplanung (Flächennutzungs- und Bebauungsplanung)

Baumaschinenpraktikum (Prof. Boley) - Vorlesungsfreie Zeit

- Praktisches Erlernen der wichtigsten Funktionsweisen von ausgewählten Baumaschinen

Leistungsnachweis

| Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten. |

Dauer und Häufigkeit

Modulname

Grundlagen des Verkehrswesens und der Raumplanung II

<table>
<thead>
<tr>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3801</td>
</tr>
</tbody>
</table>

Konto Pflichtmodule Kl, Ul und VI - BAU 2019

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Univ.-Prof. Dr.-Ing. Christian Jacoby</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Workload in (h)

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13991</td>
<td>VL</td>
<td>Straßenentwurf I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13992</td>
<td>VL</td>
<td>Straßenbautechnik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13993</td>
<td>UE</td>
<td>Straßenentwurf und Straßenbautechnik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13994</td>
<td>VL</td>
<td>Städtebauliche Planung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13995</td>
<td>VL</td>
<td>Grundlagen der Projektentwicklung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>13996</td>
<td>UE</td>
<td>Städtebauliche Planung und Projektentwicklung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 6

Qualifikationsziele

Inhalt

Straßenentwurf I / Straßenbautechnik - WT

Straßenentwurf I (Prof. Hoffmann)

- Grundlagen des Straßenentwurfs
- Trassierung im Lageplan
- Trassierung im Höhenplan
- Trassierung im Querschnitt
- Regelquerschnitte

Straßenbautechnik (Dr. Kienlein)
Modulname: Grundlagen des Verkehrswesens und der Raumplanung II

- Aufbau der Straßenkonstruktion
- Beanspruchungen aus Verkehrslasten und Klima
- Untergrund und Unterbau
- Frostschutz und Entwässerung
- Konstruktive Gestaltung des Oberbaus (Asphalt, Beton, Pflaster)
- Bemessung (RStO, RDO)

Übung zu Straßenentwurf und -bautechnik

- Trassierungsübungen im Lage- und Höhenplan
- Übungen zur Bemessung

Städtebauliche Planung (Prof. Jacoby) - WT

- Analyse städtebaulicher Entwicklungen und Strukturen
- Städtebauliches Entwerfen (Entwurfsmethoden und -kriterien)
- Städtebauliche Entwicklungs- und Strukturpläne
- Bebauungskonzepte und Bebauungspläne
- Planungen zum Stadtumbau (Stadtsanierung und -erneuerung)
- Umsetzung der städtebaulichen Planung, Zulässigkeit von Bauvorhaben

Grundlagen der Projektentwicklung (Prof. Jacoby / Prof. Höcker) - WT

- Einführung in die Methoden der Projektentwicklung
- Aufgaben und Leistungsbilder der Projektentwicklung
- Projektentwicklung bei städtebaulichen Planungen
- Projektentwicklung bei verkehrlichen Infrastrukturplanungen
- Bewertungsmethoden (Nutz-Kosten-Analyse, Nutzwertanalyse)
- Machbarkeitsstudien (Projektstudien)

Übung Städtebauliche Planung und Projektentwicklung

- Analyse städtebaulicher Strukturen
- Anfertigung von Bebauungskonzepten
- Auswertung von Bebauungsplänen
- Projektorganisation und Prozessmanagement

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Modulname
Grundlagen des wissenschaftlichen Arbeitens in den Ingenieurwissenschaften

Modulnummer
3581

Konto
Wahlpflichtmodule KI - BAU 2019

Modulverantwortliche/r
Univ.-Prof. Dr.-Ing. Karl-Heinz Thiemann

Modultyp
Wahlpflicht

Empf. Trimester
6

Workload in (h)
Präsenzzeit in (h)
Selbststudium in (h)
ECTS-Punkte
90
16
74
3

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>35811</td>
<td>VL</td>
<td>Grundlagen des wissenschaftlichen Arbeitens</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>35812</td>
<td>SP</td>
<td>Studienarbeit</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)
4

Empfohlene Voraussetzungen
Alle Grundlagen- und Fachmodule, die für die Bearbeitung der jeweiligen Studienarbeit erforderlich sind.

Qualifikationsziele

Inhalt

Grundlagen des wissenschaftlichen Arbeitens (Prof. Thiemann)

Die Vorlesung "Grundlagen des wissenschaftlichen Arbeitens" behandelt die Recherche, Einordnung und Auswertung wissenschaftlicher Literatur sowie Techniken wissenschaftlichen Schreibens und Zitierens. Dabei stehen die verschiedenen Formen wissenschaftlicher Abhandlungen und Präsentationen im Fokus der Betrachtung.

Studienarbeit (alle Professoren BAU)

Der bzw. die Studierende sucht sich in eigener Initiative eine Betreuerin bzw. einen Betreuer, legt mit ihr/ihm ein Thema für die Studienarbeit im Umfang von 2 ECTS fest und bearbeitet eine eng abgegrenzte Problemstellung aus einem Bereich

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenschein für die Studienarbeit. Die Studienarbeit ist bis spätestens Ende Juli des jeweiligen Studienjahres abzuschließen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine Vorbereitung und thematische Einarbeitung für die spätere Bearbeitung anderer wissenschaftlicher Arbeiten, insbesondere der Bachelorarbeit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimesters.</td>
</tr>
<tr>
<td>Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sonstige Bemerkungen</th>
</tr>
</thead>
</table>
Modulname

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen des wissenschaftlichen Arbeitens in den Ingenieurwissenschaften</td>
<td>3581</td>
</tr>
</tbody>
</table>

Konto

<table>
<thead>
<tr>
<th>Wahlpflichtmodule UI - BAU 2019</th>
</tr>
</thead>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Karl-Heinz Thiemann</td>
<td>Wahlpflicht 6</td>
</tr>
</tbody>
</table>

Workload in (h)

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>74</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>35811</td>
<td>VL</td>
<td>Grundlagen des wissenschaftlichen Arbeitens</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>35812</td>
<td>SP</td>
<td>Studienarbeit</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

4

Empfohlene Voraussetzungen

Alle Grundlagen- und Fachmodule, die für die Bearbeitung der jeweiligen Studienarbeit erforderlich sind.

Qualifikationsziele

Inhalt

Grundlagen des wissenschaftlichen Arbeitens (Prof. Thiemann)

Die Vorlesung "Grundlagen des wissenschaftlichen Arbeitens" behandelt die Recherche, Einordnung und Auswertung wissenschaftlicher Literatur sowie Techniken wissenschaftlichen Schreibens und Zitierens. Dabei stehen die verschiedenen Formen wissenschaftlicher Abhandlungen und Präsentationen im Fokus der Betrachtung.

Studienarbeit (alle Professoren BAU)

Der bzw. die Studierende sucht sich in eigener Initiative eine Betreuerin bzw. einen Betreuer, legt mit ihr/ihm ein Thema für die Studienarbeit im Umfang von 2 ECTS fest und bearbeitet eine eng abgegrenzte Problemstellung aus einem Bereich.

Stand: 09. Juli 2019

Universität der Bundeswehr München

Seite 67 von 230

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenschein für die Studienarbeit. Die Studienarbeit ist bis spätestens Ende Juli des jeweiligen Studienjahres abzuschließen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine Vorbereitung und thematische Einarbeitung für die spätere Bearbeitung anderer wissenschaftlicher Arbeiten, insbesondere der Bachelorarbeit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
| Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimesters.
Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen. |

<table>
<thead>
<tr>
<th>Sonstige Bemerkungen</th>
</tr>
</thead>
</table>
Modulname

| Grundlagen des wissenschaftlichen Arbeitens in den Ingenieurwissenschaften | 3581 |

Konto | Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r	Modultyp	Empf. Trimester
Univ.-Prof. Dr.-Ing. Karl-Heinz Thiemann | Wahlpflicht | 6

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
90 | 16 | 74 | 3

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>35811</td>
<td>VL</td>
<td>Grundlagen des wissenschaftlichen Arbeitens</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>35812</td>
<td>SP</td>
<td>Studienarbeit</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) | 4 |

Empfohlene Voraussetzungen

Alle Grundlagen- und Fachmodule, die für die Bearbeitung der jeweiligen Studienarbeit erforderlich sind.

Qualifikationsziele

Inhalt

Grundlagen des wissenschaftlichen Arbeitens (Prof. Thiemann)

Die Vorlesung "Grundlagen des wissenschaftlichen Arbeitens" behandelt die Recherche, Einordnung und Auswertung wissenschaftlicher Literatur sowie Techniken wissenschaftlichen Schreibens und Zitierens. Dabei stehen die verschiedenen Formen wissenschaftlicher Abhandlungen und Präsentationen im Fokus der Betrachtung.

Studienarbeit (alle Professoren BAU)

Der bzw. die Studierende sucht sich in eigener Initiative eine Betreuerin bzw. einen Betreuer, legt mit ihr/ihm ein Thema für die Studienarbeit im Umfang von 2 ECTS fest und bearbeitet eine eng abgegrenzte Problemstellung aus einem Bereich.

Leistungsnachweis

Notenschein für die Studienarbeit. Die Studienarbeit ist bis spätestens Ende Juli des jeweiligen Studienjahres abzuschließen.

Verwendbarkeit

Allgemeine Vorbereitung und thematische Einarbeitung für die spätere Bearbeitung anderer wissenschaftlicher Arbeiten, insbesondere der Bachelorarbeit.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimesters. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Sonstige Bemerkungen

Modulname: Holzbau

| Modulnummer | 3746 |

Konto: Pflichtmodule KI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr. techn. Andreas Taras

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37461</td>
<td>VL</td>
<td>Holzbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37462</td>
<td>UE</td>
<td>Holzbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 4

Empfohlene Voraussetzungen:
Für eine erfolgreiche Teilnahme werden die Lehrinhalte des Moduls Grundlagen des Konstruktiven Ingenieurbaus vorausgesetzt.

Qualifikationsziele:

Inhalt:
Es werden aufbauend auf die Inhalte der Vorlesung Grundlagen des Konstruktiven Ingenieurbaus - die Hintergründe und die praktische Anwendung der Nachweiskonzepte für Tragelemente aus Holz dargestellt. Fertigungsbedingte Randbedingungen und materialbedingte Unterschiede bei der Wahl der Bauteildimensionen und Anschlusslösungen werden betont. Die Prinzipien der Modellbildung zum Nachweis der Tragsicherheit, Dauerhaftigkeit und Gebrauchstauglichkeit werden aufgezeigt. Die folgenden Themenschwerpunkte werden behandelt:

- Vertiefende Darstellung der relevanten Materialeigenschaften von Holz
- Tragfähigkeit und Verformbarkeit von Querschnitten: plastische und elastische Grenzzustände
- Verbindungsmittel
• Einfache Anschlüsse und Knoten: Modellbildung und Nachweismethode
• Stabilität von Bauteilen und Behandlung der Effekte 2. Ordnung bei der Systemberechnung
• Einführung in die Verbundbauweise

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagsexkursion) stattfinden.

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 25 Minuten.

Als Prüfungsvorleistung sind Hausarbeiten im Holzbau anzufertigen.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für den Stahlbau.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Holzbau
Modulnummer: 3746

<table>
<thead>
<tr>
<th>Konto</th>
<th>Wahlpflichtmodule UI - BAU 2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr. techn. Andreas Taras</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37461</td>
<td>VL</td>
<td>Holzbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37462</td>
<td>UE</td>
<td>Holzbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden die Lehrinhalte des Moduls Grundlagen des Konstruktiven Ingenieurbau vorausgesetzt.

Qualifikationsziele

Inhalt

Es werden - aufbauend auf die Inhalte der Vorlesung Grundlagen des Konstruktiven Ingenieurbau - die Hintergründe und die praktische Anwendung der Nachweiskonzepte für Tragelemente aus Holz dargestellt. Fertigungsbedingte Randbedingungen und materialbedingte Unterschiede bei der Wahl der Bauteildimensionen und Anschlusslösungen werden betont. Die Prinzipien der Modellbildung zum Nachweis der Tragsicherheit, Dauerhaftigkeit und Gebrauchstauglichkeit werden aufgezeigt. Die folgenden Themenschwerpunkte werden behandelt:

- Vertiefende Darstellung der relevanten Materialeigenschaften von Holz
- Tragfähigkeit und Verformbarkeit von Querschnitten: plastische und elastische Grenzzustände
- Verbindungsmittel
<table>
<thead>
<tr>
<th>Modulname: Holzbau</th>
</tr>
</thead>
</table>

- Einfache Anschlüsse und Knoten: Modellbildung und Nachweisführung
- Stabilität von Bauteilen und Behandlung der Effekte 2. Ordnung bei der Systemberechnung
- Einführung in die Verbundbauweise

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagsexkursion) stattfinden.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 25 Minuten.</td>
</tr>
<tr>
<td>Als Prüfungsvorleistung sind Hausarbeiten im Holzbau anzufertigen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul liefert wesentliche Grundlagen für den Stahlbau.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Holzbau

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Holzbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>3746</td>
<td></td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr. techn. Andreas Taras

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37461</td>
<td>VL</td>
<td>Holzbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37462</td>
<td>UE</td>
<td>Holzbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden die Lehrinhalte des Moduls Grundlagen des Konstruktiven Ingenieurbaus vorausgesetzt.

Qualifikationsziele

Inhalt

Es werden - aufbauend auf die Inhalte der Vorlesung Grundlagen des Konstruktiven Ingenieurbau - die Hintergründe und die praktische Anwendung der Nachweiskonzepte für Tragelemente aus Holz dargestellt. Fertigungsbedingte Randbedingungen und materialbedingte Unterschiede bei der Wahl der Bauteildimensionen und Anschlusslösungen werden betont. Die Prinzipien der Modellbildung zum Nachweis der Tragsicherheit, Dauerhaftigkeit und Gebrauchstauglichkeit werden aufgezeigt. Die folgenden Themenschwerpunkte werden behandelt:

- Vertiefende Darstellung der relevanten Materialeigenschaften von Holz
- Tragfähigkeit und Verformbarkeit von Querschnitten: plastische und elastische Grenzzustände
- Verbindungsmittel
<table>
<thead>
<tr>
<th>Modulname: Holzbau</th>
</tr>
</thead>
</table>

- Einfache Anschlüsse und Knoten: Modellbildung und Nachweisführung
- Stabilität von Bauteilen und Behandlung der Effekte 2. Ordnung bei der Systemberechnung
- Einführung in die Verbundbauweise

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagsexkursion) stattfinden.

Leistungsnachweis

<table>
<thead>
<tr>
<th>Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 25 Minuten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Als Prüfungsvorleistung sind Hausarbeiten im Holzbau anzufertigen.</td>
</tr>
</tbody>
</table>

Verwendbarkeit

| Das Modul liefert wesentliche Grundlagen für den Stahlbau. |

Dauer und Häufigkeit

| Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen. |
Qualifikationsziele

Inhalt

Hydraulik (Prof. Malcherek):

1. Die Massenerhaltung in der Hydraulik
2. Volumen und Druck
3. Der hydrostatische Druck
4. Die Druckkraft auf beliebige Flächen
5. Kräfte und Impulsbilanz
6. Die Energieerhaltung
7. Die Viskosität der Flüssigkeiten
8. Rohrströmungen
9. Gerinneströmmungen
10. Strömen und Schießen
11. Die Strömungskraft auf Körper

Hydromechanik I (Prof. Malcherek):

1. Die Infinitesimalisierung der Massenbilanz
2. Die Infinitesimalisierung der Impulsbilanz
3. Einführung in die Stromlinientheorie
4. Anwendung der Stromlinientheorie in Gerinne- oder Rohrströmungen
5. Die Euler-Gleichungen
6. Die Viskosität
7. Die Navier-Stokes-Gleichungen
8. Laminare Strömungen
9. Turbulenzfassung
10. Reynoldsgleichungen

Hydromechanik II, Hydrologie und Wasserwirtschaft (Prof. Malcherek):

1. Die wandnahe Grenzschicht
2. Turbulente Gerinneströmmungen
3. Turbulente Rohrströmungen
4. Das ke-Modell
5. Transport: Advektion und Diffusion
6. Einführung in die Wasserwirtschaft I
7. Einführung in die Wasserwirtschaft II
8. Hydrologie I: Die Wasserhaushaltsgleichung
9. Hydrologie II: Niederschlag
10. Hydrologie III: Verdunstung

11. Hydrologie IV: Abfluss

Leistungsnachweis

Schriftliche Prüfung 180 Min. oder mündliche Prüfung 30 Min.

Dauer und Häufigkeit

Modulname: Hydromechanik für ME

Konto: Wahlpflichtmodule UI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Andreas Malcherek</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13971</td>
<td>VL</td>
<td>Hydraulik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14001</td>
<td>VL</td>
<td>Hydromechanik I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14002</td>
<td>UE</td>
<td>Hydromechanik I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14003</td>
<td>VL</td>
<td>Hydromechanik II, Hydrologie und Wasserbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 6

Qualifikationsziele

Inhalt

Hydraulik (Prof. Malcherek):

1. Die Massenerhaltung in der Hydraulik
2. Volumen und Druck
3. Der hydrostatische Druck
4. Die Druckkraft auf beliebige Flächen
5. Kräfte und Impulsbilanz
6. Die Energieerhaltung
7. Die Viskosität der Flüssigkeiten
8. Rohrströmungen
9. Gerinneströmungen
10. Strömen und Schießen
11. Die Strömungskraft auf Körper

Hydromechanik I (Prof. Malcherek):

1. Die Infinitesimalisierung der Massenbilanz
2. Die Infinitesimalisierung der Impulsbilanz
3. Einführung in die Stromlinientheorie
4. Anwendung der Stromlinientheorie in Gerinne- oder Rohrströmungen
5. Die Euler-Gleichungen
6. Die Viskosität
7. Die Navier-Stokes-Gleichungen
8. Laminare Strömungen
9. Turbulenzfassung
10. Reynolds-Gleichungen

Hydromechanik II, Hydrologie und Wasserwirtschaft (Prof. Malcherek):

1. Die wandnahe Grenzschicht
2. Turbulente Gerinneströmungen
3. Turbulente Rohrströmungen
4. Das ke-Modell
5. Transport: Advektion und Diffusion
6. Einführung in die Wasserwirtschaft I
7. Einführung in die Wasserwirtschaft II
8. Hydrologie I: Die Wasserhaushaltsgleichung
9. Hydrologie II: Niederschlag
10. Hydrologie III: Verdunstung

11. Hydrologie IV: Abfluss

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 180 Min. oder mündliche Prüfung 30 Min.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulname: Hydromechanik für ME

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydromechanik für ME</td>
<td>2940</td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. Andreas Malcherek

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13971</td>
<td>VL</td>
<td>Hydraulik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14001</td>
<td>VL</td>
<td>Hydromechanik I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14002</td>
<td>UE</td>
<td>Hydromechanik I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14003</td>
<td>VL</td>
<td>Hydromechanik II, Hydrologie und Wasserbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 6

Qualifikationsziele

Inhalt

Hydraulik (Prof. Malcherek):

1. Die Massenerhaltung in der Hydraulik
2. Volumen und Druck
3. Der hydrostatische Druck
4. Die Druckkraft auf beliebige Flächen
5. Kräfte und Impulsbilanz
6. Die Energieerhaltung
7. Die Viskosität der Flüssigkeiten
8. Rohrströmungen
9. Gerinneströmungen
10. Strömen und Schießen
11. Die Strömungskraft auf Körper

Hydromechanik I (Prof. Malcherek):
1. Die Infinitesimalisierung der Massenbilanz
2. Die Infinitesimalisierung der Impulsbilanz
3. Einführung in die Stromlinientheorie
4. Anwendung der Stromlinientheorie in Gerinne- oder Rohrströmungen
5. Die Euler-Gleichungen
6. Die Viskosität
7. Die Navier-Stokes-Gleichungen
8. Laminare Strömungen
9. Turbulenzerfassung
10. Reynoldsgleichungen

Hydromechanik II, Hydrologie und Wasserwirtschaft (Prof. Malcherek):
1. Die wandnahe Grenzschicht
2. Turbulente Gerinneströmungen
3. Turbulente Rohrströmungen
4. Das ke-Modell
5. Transport: Advektion und Diffusion
6. Einführung in die Wasserwirtschaft I
7. Einführung in die Wasserwirtschaft II
8. Hydrologie I: Die Wasserhaushaltsgleichung
9. Hydrologie II: Niederschlag
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Hydrologie III: Verdunstung</td>
<td></td>
</tr>
<tr>
<td>11. Hydrologie IV: Abfluss</td>
<td></td>
</tr>
<tr>
<td>Leistungsnachweis</td>
<td></td>
</tr>
<tr>
<td>Schriftliche Prüfung 180 Min. oder mündliche Prüfung 30 Min.</td>
<td></td>
</tr>
<tr>
<td>Dauer und Häufigkeit</td>
<td></td>
</tr>
</tbody>
</table>
Modulname: Hydromechanik und Wasserbau
Modulnummer: 3749

Konto: Pflichtmodule UI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Andreas Malcherek</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Workload in (h)

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14001</td>
<td>VL</td>
<td>Hydromechanik I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14002</td>
<td>UE</td>
<td>Hydromechanik I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14003</td>
<td>VL</td>
<td>Hydromechanik II, Hydrologie und Wasserwirtschaft</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14004</td>
<td>VL</td>
<td>Wasserbau II</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Inhalt

Hydromechanik I (Prof. Malcherek):

1. Die Infinitesimalisierung der Massenbilanz
2. Die Infinitesimalisierung der Impulsbilanz
3. Einführung in die Stromlinientheorie
4. Anwendung der Stromlinientheorie in Gerinne- oder Rohrströmungen
5. Die Eulergleichungen
6. Die Viskosität
7. Die Navier-Stokes-Gleichungen
8. Laminare Strömungen
9. Turbulenzerfassung
10. Reynoldsgleichungen

Hydromechanik II, Hydrologie und Wasserwirtschaft (Prof. Malcherek):

1. Die wandnahe Grenzschicht
2. Turbulente Gerinneströmungen
3. Turbulente Rohrströmungen
4. Das ke-Modell
5. Transport: Advektion und Diffusion
6. Einführung in die Wasserwirtschaft I
7. Einführung in die Wasserwirtschaft II
8. Hydrologie I: Die Wasserhaushaltsgleichung
9. Hydrologie II: Niederschlag
10. Hydrologie III: Verdungstung
11. Hydrologie IV: Abfluss

Wasserbau II (Prof. Malcherek):

1. Belastung der Gewässersohle
2. Normalabfluss
3. Spiegelliniengleichung
4. Interstationäre Hochwasserberechnungen
5. Beginn der Sedimentbewegung, Sohlsicherung
6. Berechnung des Geschiebetransports, Kolke
7. Einführung in den Verkehrswasserbau
8. Unterhaltung von Wasserstraßen
<table>
<thead>
<tr>
<th>9. Fahrdynamik des Schiffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Schleusen und Schiffshebewerke</td>
</tr>
</tbody>
</table>

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Qualifikationsziele

Inhalt

Hydromechanik I (Prof. Malcherek):

1. Die Infinitesimalisierung der Massenbilanz
2. Die Infinitesimalisierung der Impulsbilanz
3. Einführung in die Stromlinientheorie
4. Anwendung der Stromlinientheorie in Gerinne- oder Rohrströmungen
5. Die Eulergleichungen
6. Die Viskosität
7. Die Navier-Stokes-Gleichungen
8. Laminare Strömungen
9. Turbulenzerfassung
10. Reynoldsgleichungen

Hydromechanik II, Hydrologie und Wasserwirtschaft (Prof. Malcherek):

1. Die wandnahe Grenzschicht
2. Turbulente Gerinneströmungen
3. Turbulente Rohrströmungen
4. Das ke-Modell
5. Transport: Advektion und Diffusion
6. Einführung in die Wasserwirtschaft I
7. Einführung in die Wasserwirtschaft II
8. Hydrologie I: Die Wasserhaushaltsgleichung
9. Hydrologie II: Niederschlag
10. Hydrologie III: Verdungstung
11. Hydrologie IV: Abfluss

Wasserbau II (Prof. Malcherek):

1. Belastung der Gewässersohle
2. Normalabfluss
3. Spiegelliniengleichung
4. Interstationäre Hochwasserberechnungen
5. Beginn der Sedimentbewegung, Sohlsicherung
6. Berechnung des Geschiebetransports, Kolke
7. Einführung in den Verkehrswasserbau
8. Unterhaltung von Wasserstraßen

Stand: 09. Juli 2019
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Fahrdynamik des Schiffs</td>
</tr>
<tr>
<td>10</td>
<td>Schleusen und Schiffshebewerke</td>
</tr>
</tbody>
</table>

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Modulname: Hydromechanik und Wasserbau

Konto: Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. Andreas Malcherek

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14001</td>
<td>VL</td>
<td>Hydromechanik I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14002</td>
<td>UE</td>
<td>Hydromechanik I</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14003</td>
<td>VL</td>
<td>Hydromechanik II, Hydrologie und Wasserwirtschaft</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14004</td>
<td>VL</td>
<td>Wasserbau II</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 6

Qualifikationsziele

Inhalt

Hydromechanik I (Prof. Malcherek):

1. Die Infinitesimalisierung der Massenbilanz
2. Die Infinitesimalisierung der Impulsbilanz
3. Einführung in die Stromlinientheorie
4. Anwendung der Stromlinientheorie in Gerinne- oder Rohrströmungen
5. Die Eulergleichungen
6. Die Viskosität
7. Die Navier-Stokes-Gleichungen
8. Laminare Strömungen

9. Turbulenzerfassung

10. Reynoldsgleichungen

Hydromechanik II, Hydrologie und Wasserwirtschaft (Prof. Malcherek):

1. Die wandnahe Grenzschicht

2. Turbulente Gerinneströmungen

3. Turbulente Rohrströmungen

4. Das ke-Modell

5. Transport: Advektion und Diffusion

6. Einführung in die Wasserwirtschaft I

7. Einführung in die Wasserwirtschaft II

8. Hydrologie I: Die Wasserhaushaltsgleichung

9. Hydrologie II: Niederschlag

10. Hydrologie III: Verdunstung

11. Hydrologie IV: Abfluss

Wasserbau II (Prof. Malcherek):

1. Belastung der Gewässersohle

2. Normalabfluss

3. Spiegelliniengleichung

4. Interstationäre Hochwasserberechnungen

5. Beginn der Sedimentbewegung, Sohlsicherung

6. Berechnung des Geschiebetransports, Kolke

7. Einführung in den Verkehrswasserbau

8. Unterhaltung von Wasserstraßen
9. Fahrdynamik des Schiffs

10. Schleusen und Schiffshebewerke

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulname: Interdisziplinäres Projekt KI

Konto | Pflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Geralt Siebert</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>25</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30271</td>
<td>VÜ</td>
<td>Interdisziplinäres Projekt Konstruktiver Ingenieurbau</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 5

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen des Konstruktiven Ingenieurbaus entsprechend den zuvor gehört Modulen vorausgesetzt.

Qualifikationsziele

Im Modul "Interdisziplinäres Projekt KI" erwerben die Studierenden die Grundfähigkeiten, die in den vorangegangenen Modulen erlernte theoretische Wissen an Beispielen aus der Ingenieurpraxis umzusetzen und sich in für sie neue Spezialthemen einarbeiten.

Inhalt

Große Bauingenieursreisekursion als 5-tägige Exkursion

Verantwortlich sind die Professoren Taras, Braml und Siebert sowie wiss. Mitarbeiter des Instituts für Konstruktiven Ingenieurbau; je nach Themenstellung ergänzende Betreuung durch Professoren und Mitarbeiter anderer Institute.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Leistungsnachweis

Notenschein für die Studienarbeit

Verwendbarkeit

Vorbereitung einer Bachelorarbeit

Dauer und Häufigkeit

Modulname: Interdisziplinäres Projekt KI

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interdisziplinäres Projekt KI</td>
<td>3027</td>
</tr>
</tbody>
</table>

Konto | Wahlpflichtmodule UI - BAU 2019

Modulverantwortliche/r	Modultyp	Empf. Trimester
Univ.-Prof. Dr.-Ing. Geralt Siebert | Pflicht | 6 |

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>25</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30271</td>
<td>VÜ</td>
<td>Interdisziplinäres Projekt Konstruktiver Ingenieurbau</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

5

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen des Konstruktiven Ingenieurbaus entsprechend den zuvor gehörten Modulen vorausgesetzt.

Qualifikationsziele

Im Modul "Interdisziplinäres Projekt KI" erwerben die Studierenden die Grundfähigkeiten, das in den vorangegangenen Modulen erlernte theoretische Wissen an Beispielen aus der Ingenieurpraxis umzusetzen und sich in für sie neue Spezialthemen einzuarbeiten.

Inhalt

Große Bauingenieurexkursion als 5-tägige Exkursion

Verantwortlich sind die Professoren Taras, Braml und Siebert sowie wiss. Mitarbeiter des Instituts für Konstruktiven Ingenieurbau; je nach Themenstellung ergänzende Betreuung durch Professoren und Mitarbeiter anderer Institute.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenschein für die Studienarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbereitung einer Bachelorarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulname: Interdisziplinäres Projekt KI

| Modulnummer | 3027 |

Konto: Wahlpflichtmodule VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Geralt Siebert</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>25</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30271</td>
<td>VÜ</td>
<td>Interdisziplinäres Projekt Konstruktiver Ingenieurbau</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summe (Pflicht und Wahlpflicht)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen des Konstruktiven Ingenieurbaus entsprechend den zuvor gehörten Modulen vorausgesetzt.

Qualifikationsziele

Im Modul "Interdisziplinäres Projekt KI" erwerben die Studierenden die Grundfähigkeiten, das in den vorangegangenen Modulen erlernte theoretische Wissen an Beispielen aus der Ingenieurpraxis umzusetzen und sich in für sie neue Spezialthemen einzuarbeiten.

Inhalt

Große Bauingenieurexkursion als 5-tägige Exkursion

Verantwortlich sind die Professoren Taras, Braml und Siebert sowie wiss. Mitarbeiter des Instituts für Konstruktiven Ingenieurbau; je nach Themenstellung ergänzende Betreuung durch Professoren und Mitarbeiter anderer Institute.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenschein für die Studienarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbereitung einer Bachelorarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulname: Interdisziplinäres Projekt UI

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Christian Jacoby</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>25</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30231</td>
<td>VÜ</td>
<td>Interdisziplinäres Projekt Umwelt- und Infrastruktur</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

5

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen des Wasserwesens bzw. der Raumplanung und des Verkehrswesens entsprechend dem zuvor gehörten Modulen vorausgesetzt.

Qualifikationsziele

In der Studienarbeit sollen die Studierenden sowohl die Umsetzung des erlernten Wissens, als auch Lösungsvorschläge für neue Fragestellungen erarbeiten. Dabei soll auch Erfahrung in der Zusammenarbeit und Organisation im Team mit anderen Ausbildungsrichtungen gesammelt werden.

Inhalt

Große Bauingenieurexkursion als 5-tägige Exkursion
Bearbeitung überschaubarer Projektbeispiele aus der Praxis mit integrierten Analysen und Planungen in den Bereichen Verkehrswesen und Raumplanung oder Wasserwesen sowie Siedlungswasserwirtschaft unter Einbeziehung der Geotechnik und weiterer Umweltbelange wie zum Beispiel

- Planung einer Umgehungsstraße unter Berücksichtigung der Siedlungsentwicklung und Umweltbelange
- Planung eines Wohn-, Gewerbe- oder Sondergebietes mit Verkehrserschließung
- Stadtumbau mit Optimierung von Verkehrsnetzen und -knoten

Bei der Erstellung der Studienarbeit wird eine Bearbeitung im Team bevorzugt.

Verantwortlich sind je nach Themenstellung die Professoren und wiss. Mitarbeiter des Instituts für Verkehrswesen und Raumplanung oder des Instituts für Wasserwesen mit ergänzender Betreuung des Instituts für Bodenmechanik und Grundbau sowie je nach Bedarf weiterer Institute der Universität.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Leistungsnachweis

Notenschein für die Studienarbeit.

Verwendbarkeit

Vorbereitung einer Bachelorarbeit

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils in der vorlesungsfreien Zeit des Frühjahrstrimesters.

Als Startzeitpunkt ist die vorlesungsfreie Zeit im 2. Studienjahr vorgesehen.
Modulname: Interdisziplinäres Projekt UI

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interdisziplinäres Projekt UI</td>
<td>3023</td>
</tr>
</tbody>
</table>

Konto | Wahlpflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Christian Jacoby</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>25</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30231</td>
<td>VÜ</td>
<td>Interdisziplinäres Projekt Umwelt- und Infrastruktur</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen des Wasserwesens bzw. der Raumplanung und des Verkehrswesens entsprechend den zuvor gehört Modulen vorausgesetzt.

Qualifikationsziele

In der Studienarbeit sollen die Studierenden sowohl die Umsetzung des erlernten Wissens, als auch Lösungsvorschläge für neue Fragestellungen erarbeiten. Dabei soll auch Erfahrung in der Zusammenarbeit und Organisation im Team mit anderen Ausbildungsrichtungen gesammelt werden.

Inhalt

| Große Bauingenieurexkursion als 5-tägige Exkursion |
Bearbeitung überschaubarer Projektbeispiele aus der Praxis mit integrierten Analysen und Planungen in den Bereichen Verkehrswesen und Raumplanung oder Wasserwesen sowie Siedlungswasserwirtschaft unter Einbeziehung der Geotechnik und weiterer Umweltbelange wie zum Beispiel

- Planung einer Umgehungsstraße unter Berücksichtigung der Siedlungsentwicklung und Umweltbelange
- Planung eines Wohn-, Gewerbe- oder Sondergebietes mit Verkehrserschließung
- Stadtumbau mit Optimierung von Verkehrsnetzen und -knoten

Bei der Erstellung der Studienarbeit wird eine Bearbeitung im Team bevorzugt.

Verantwortlich sind je nach Themenstellung die Professoren und wiss. Mitarbeiter des Instituts für Verkehrswesen und Raumplanung oder des Instituts für Wasserwesen mit ergänzender Betreuung des Instituts für Bodenmechanik und Grundbau sowie je nach Bedarf weiterer Institute der Universität.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenschein für die Studienarbeit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbereitung einer Bachelorarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulname

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interdisziplinäres Projekt UI</td>
<td>3023</td>
</tr>
</tbody>
</table>

Konto

Wahlpflichtmodule VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Christian Jacoby</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>25</td>
<td>125</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30231</td>
<td>VÜ</td>
<td>Interdisziplinäres Projekt Umwelt- und Infrastruktur</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

5

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen des Wasserwesens bzw. der Raumplanung und des Verkehrswesens entsprechend den zuvor gehört Modulen vorausgesetzt.

Qualifikationsziele

In der Studienarbeit sollen die Studierenden sowohl die Umsetzung des erlernten Wissens, als auch Lösungsvorschläge für neue Fragestellungen erarbeiten. Dabei soll auch Erfahrung in der Zusammenarbeit und Organisation im Team mit anderen Ausbildungsrichtungen gesammelt werden.

Inhalt

Große Bauingenieurexkursion als 5-tägige Exkursion
Bearbeitung überschaubarer Projektbeispiele aus der Praxis mit integrierten Analysen und Planungen in den Bereichen Verkehrswesen und Raumplanung oder Wasserwesen sowie Siedlungswasserwirtschaft unter Einbeziehung der Geotechnik und weiterer Umweltbelange wie zum Beispiel

- Planung einer Umgehungsstraße unter Berücksichtigung der Siedlungsentwicklung und Umweltbelange
- Planung eines Wohn-, Gewerbe- oder Sondergebietes mit Verkehrserschließung
- Stadtumbau mit Optimierung von Verkehrsnetzen und -knoten

Bei der Erstellung der Studienarbeit wird eine Bearbeitung im Team bevorzugt.

Verantwortlich sind je nach Themenstellung die Professoren und wiss. Mitarbeiter des Instituts für Verkehrswesen und Raumplanung oder des Instituts für Wasserwesen mit ergänzender Betreuung des Instituts für Bodenmechanik und Grundbau sowie je nach Bedarf weiterer Institute der Universität.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenschein für die Studienarbeit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbereitung einer Bachelorarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulverantwortliche/r

Univ.-Prof. Dr.-Ing. Silja Hoffmann

Modultyp: Pflicht

Empf. Trimester: 6

Workload in (h) Präsenzzeit in (h) Selbststudium in (h) ECTS-Punkte

240 40 200 8

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37501</td>
<td>VÜ</td>
<td>Interdisziplinäres Projekt Verkehrsentwurf</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 8

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen der Raumplanung und des Verkehrswesens entsprechend den zuvor gehörten Modulen vorausgesetzt.

Qualifikationsziele

In der Studienarbeit sollen die Studierenden sowohl die Umsetzung des erlernten Wissens, als auch Lösungsvorschläge für neue Fragestellungen erarbeiten. Dabei soll auch Erfahrung in der Zusammenarbeit und Organisation im Team mit anderen Ausbildungsrichtungen gesammelt werden.

Inhalt

Große Bauingenieurexkursion als 5-tägige Exkursion.

Bearbeitung überschaubarer Projektbeispiele aus der Praxis mit integrierten Analysen und Planungen im Bereich der Verkehrsinfrastruktur unter Berücksichtigung der Raumplanung und Umweltbelange wie zum Beispiel:
• Planung einer Umgehungsstraße unter Berücksichtigung der Siedlungsentwicklung und Umweltbelange
• Planung einer Fernstraße mit Anbindung an das untergeordnete Straßennetz
• Planung der verkehrstechnischen Infrastruktur und Betrieb des Verkehrssystems

Bei der Erstellung der Studienarbeit wird eine Bearbeitung im Team bevorzugt.

Verantwortlich sind je nach Themenstellung die Professoren und wiss. Mitarbeiter des Instituts für Verkehrswesen und Raumplanung sowie je nach Bedarf weiterer Institute der Universität.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenschein für die Studienarbeit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbereitung einer Bachelorarbeit.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulname: Interdisziplinäres Projekt Verkehrsentwurf

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3750</td>
<td>Univ.-Prof. Dr.-Ing. Silja Hoffmann</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
240 | 40 | 200 | 8

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37501</td>
<td>VÜ</td>
<td>Interdisziplinäres Projekt Verkehrsentwurf</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 8

Empfohlene Voraussetzungen
Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen der Raumplanung und des Verkehrswesens entsprechend den zuvor gehörten Modulen vorausgesetzt.

Qualifikationsziele

In der Studienarbeit sollen die Studierenden sowohl die Umsetzung des erlernten Wissens, als auch Lösungsvorschläge für neue Fragestellungen erarbeiten. Dabei soll auch Erfahrung in der Zusammenarbeit und Organisation im Team mit anderen Ausbildungsrichtungen gesammelt werden.

Inhalt
Große Bauingenieurexkursion als 5-tägige Exkursion.
Bearbeitung überschaubarer Projektbeispiele aus der Praxis mit integrierten Analysen und Planungen im Bereich der Verkehrsanlage unter Berücksichtigung der Raumplanung und Umweltbelange wie zum Beispiel:

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 109 von 230
Modulname: Interdisziplinäres Projekt Verkehrsentwurf

- Planung einer Umgehungsstraße unter Berücksichtigung der Siedlungsentwicklung und Umweltbelange
- Planung einer Fernstraße mit Anbindung an das untergeordnete Straßennetz
- Planung der verkehrstechnischen Infrastruktur und Betrieb des Verkehrssystems

Bei der Erstellung der Studienarbeit wird eine Bearbeitung im Team bevorzugt.

Verantwortlich sind je nach Themenstellung die Professoren und wiss. Mitarbeiter des Instituts für Verkehrswesen und Raumplanung sowie je nach Bedarf weiterer Institute der Universität.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Leistungsnachweis
- Notenschein für die Studienarbeit.

Verwendbarkeit
- Vorbereitung einer Bachelorarbeit.

Dauer und Häufigkeit
- Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils in der vorlesungsfreien Zeit des Frühjahrstrimesters.
- Als Startzeitpunkt ist die vorlesungsfreie Zeit im 2. Studienjahr vorgesehen.
Modulname: Interdisziplinäres Projekt Verkehrsentwurf

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Silja Hoffmann</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>40</td>
<td>200</td>
<td>8</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37501</td>
<td>VÜ</td>
<td>Interdisziplinäres Projekt Verkehrsentwurf</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 8

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Bereichen der Raumplanung und des Verkehrswesens entsprechend den zuvor gehörten Modulen vorausgesetzt.

Qualifikationsziele

In der Studienarbeit sollen die Studierenden sowohl die Umsetzung des erlerneten Wissens, als auch Lösungsvorschläge für neue Fragestellungen erarbeiten. Dabei soll auch Erfahrung in der Zusammenarbeit und Organisation im Team mit anderen Ausbildungsrichtungen gesammelt werden.

Inhalt

Große Bauingenieurexkursion als 5-tägige Exkursion.

Bearbeitung überschaubarer Projektbeispiele aus der Praxis mit integrierten Analysen und Planungen im Bereich der Verkehrsanlage- und Umweltbelange wie zum Beispiel:
<table>
<thead>
<tr>
<th>Modulname: Interdisziplinäres Projekt Verkehrsentwurf</th>
</tr>
</thead>
</table>

- Planung einer Umgehungsstraße unter Berücksichtigung der Siedlungsentwicklung und Umweltbelange
- Planung einer Fernstraße mit Anbindung an das untergeordnete Straßennetz
- Planung der verkehrstechnischen Infrastruktur und Betrieb des Verkehrssystems

Bei der Erstellung der Studienarbeit wird eine Bearbeitung im Team bevorzугt.

Verantwortlich sind je nach Themenstellung die Professoren und wiss. Mitarbeiter des Instituts für Verkehrswesen und Raumplanung sowie je nach Bedarf weiterer Institute der Universität.

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tägesexkursion) stattfinden.

Leistungsnachweis

Notenschein für die Studienarbeit.

Verwendbarkeit

Vorbereitung einer Bachelorarbeit.

Dauer und Häufigkeit

Modulname

| Kampfmittelräumung und militärische Altlasten | 3664 |

Konto

| Wahlpflichtmodule KI - BAU 2019 |

Modulverantwortliche/r

| Univ.-Prof. Dr.-Ing. Conrad Boley | Wahlmodul | 6 |

Workload in (h)

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>36</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>36641</td>
<td>VL</td>
<td>Grundlagen Kampfmittel und geophysikalische Verfahren</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>36642</td>
<td>VL</td>
<td>Planung und Ausführung der Kampfmittelräumung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>36643</td>
<td>VL</td>
<td>Militärische Altlasten</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

| 3 |

Qualifikationsziele

Inhalt

Grundlagen Kampfmittel und geophysikalische Verfahren (Dr. Winkelmann):

- Kampfmitteltechnische Grundlagen (Munitions- und Zündertechnik)
- Wirkkomponenten in Kampfmitteln
- Chemie und Physik der Explosivstoffe; Detonationsphysik
- Grundlagen, Einsatzmöglichkeiten und Grenzen geophysikalischer Verfahren in der Kampfmittelräumung

Planung und Ausführung der Kampfmittelräumung (Kötter):

- Organisation der Kampfmittelräumung in Deutschland
- Vorgehen in der Kampfmittelräumung gemäß den Arbeitshilfen Kampfmittelräumung (Phasenschema)
- Gefährdungsabschätzung und Räumkonzept
- Besonderheiten der Leistungsbeschreibung in der KMR
- Die Verfahren der KMR in der Ausführung
Militärische Altlasten (Prof. Boley, Prof. Börger):

- Vorschriften, technische Regelwerke und Grenzwerte
- Entstehung und Ausbreitung von militärischen Altlasten
- Sicherung und Sanierung von militärischen Altlasten
- Militärische Altlasten im Infrastrukturreinsatz
- Aspekte des Umweltschutzes

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt für das Modul ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Kampfmittelräumung und militärische Altlasten

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kampfmittelräumung und militärische Altlasten</td>
<td>3664</td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule UI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. Conrad Boley

Modultyp: Wahlmodul
Empf. Trimester: 6

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>36</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>36641</td>
<td>VL</td>
<td>Grundlagen Kampfmittel und geophysikalische Verfahren</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>36642</td>
<td>VL</td>
<td>Planung und Ausführung der Kampfmittelräumung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>36643</td>
<td>VL</td>
<td>Militärische Altlasten</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 3

Qualifikationsziele

Inhalt

Grundlagen Kampfmittel und geophysikalische Verfahren (Dr. Winkelmann):
- Kampfmitteltechnische Grundlagen (Munitions- und Zündertechnik)
- Wirkkomponenten in Kampfmitteln
- Chemie und Physik der Explosivstoffe; Detonationsphysik
- Grundlagen, Einsatzmöglichkeiten und Grenzen geophysikalischer Verfahren in der Kampfmittelräumung

Planung und Ausführung der Kampfmittelräumung (Kötter):
- Organisation der Kampfmittelräumung in Deutschland
- Vorgehen in der Kampfmittelräumung gemäß den Arbeitshilfen Kampfmittelräumung (Phasenschema)
- Gefährdungsabschätzung und Räumkonzept
- Besonderheiten der Leistungsbeschreibung in der KMR
- Die Verfahren der KMR in der Ausführung

Stand: 09. Juli 2019
Militärische Altlasten (Prof. Boley, Prof. Börger):

- Vorschriften, technische Regelwerke und Grenzwerte
- Entstehung und Ausbreitung von militärischen Altlasten
- Sicherung und Sanierung von militärischen Altlasten
- Militärische Altlasten im Infrastrukturreinsatz
- Aspekte des Umweltschutzes

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.

Als Startzeitpunkt für das Modul ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.

Stand: 09. Juli 2019

Universität der Bundeswehr München Seite 116 von 230
Modulname: Kampfmittelräumung und militärische Altlasten
Modulnummer: 3664

Konto | Wahlpflichtmodule VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Conrad Boley</td>
<td>Wahlmodul</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>36</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>36641</td>
<td>VL</td>
<td>Grundlagen Kampfmittel und geophysikalische Verfahren</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>36642</td>
<td>VL</td>
<td>Planung und Ausführung der Kampfmittelräumung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>36643</td>
<td>VL</td>
<td>Militärische Altlasten</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>36641</td>
<td>VL</td>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Inhalt

Grundlagen Kampfmittel und geophysikalische Verfahren (Dr. Winkelmann):

- Kampfmitteltechnische Grundlagen (Munitions- und Zündertechnik)
- Wirkkomponenten in Kampfmitteln
- Chemie und Physik der Explosivstoffe; Detonationsphysik
- Grundlagen, Einsatzmöglichkeiten und Grenzen geophysikalischer Verfahren in der Kampfmittelräumung

Planung und Ausführung der Kampfmittelräumung (Kötter):

- Organisation der Kampfmittelräumung in Deutschland
- Vorgehen in der Kampfmittelräumung gemäß den Arbeitshilfen Kampfmittelräumung (Phasenschema)
- Gefährdungsabschätzung und Räumkonzept
- Besonderheiten der Leistungsbeschreibung in der KMR
- Die Verfahren der KMR in der Ausführung
<table>
<thead>
<tr>
<th>Militärische Altlasten (Prof. Boley, Prof. Börger):</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vorschriften, technische Regelwerke und Grenzwerte</td>
</tr>
<tr>
<td>• Entstehung und Ausbreitung von militärischen Altlasten</td>
</tr>
<tr>
<td>• Sicherung und Sanierung von militärischen Altlasten</td>
</tr>
<tr>
<td>• Militärische Altlasten im Infrastruktureinsatz</td>
</tr>
<tr>
<td>• Aspekte des Umweltschutzes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 30 Minuten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester.</td>
</tr>
<tr>
<td>Als Startzeitpunkt für das Modul ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME
Modulnummer: 3576

Konto
Wahlpflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr. techn. Andreas Taras</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>108</td>
<td>102</td>
<td>7</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13961</td>
<td>VL</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>13962</td>
<td>UE</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>25071</td>
<td>VL</td>
<td>Konstruktive Geometrie</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>25072</td>
<td>SU</td>
<td>Darstellungstechnik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>25073</td>
<td>SU</td>
<td>Konstruktives Zeichnen, CAD</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 9

Empfohlene Voraussetzungen
Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Fächern Mechanik, Werkstoffe des Bauwesens und die Grundlagen der Baustatik vorausgesetzt.

Qualifikationsziele

Im Modul erwerben die Studierenden grundlegende Kenntnisse zum Tragverhalten einfacher Tragwerke aus Stahl, Holz und Beton und die Fähigkeit, diese selbständig zu dimensionieren und deren Stabilitätsverhalten zu beurteilen.

Außerdem erlernen die Studierenden die Fähigkeit, Pläne und technische Zeichnungen zu lesen und mit Hilfe von CAD selbst zu erstellen. Durch Bearbeitung der Studienarbeiten werden erste Teile einer Bauvorlage (Zeichnungen, Lastannahmen) erarbeitet, die als Elemente einer größeren Aufgabenstellung (Bauvorlage für ein individuelles Musterhaus) das Verständnis für Interaktion der einzelnen Teildisziplinen im Studium und der späteren Tätigkeit als Ingenieur fördern.

Inhalt

Konstruktiver Ingenieurbau (Prof. Taras):

Es werden werkstoffübergreifend die Grundlagen des Konstruktiven Ingenieurbaus vermittelt. Nach einer Einführung in die typischen Bauformen im Stahl-, Holz- und Massivbau werden die Grundlagen der Sicherheitstheorie und die bemessungsrelevanten Werkstoffkenngrößen hergeleitet. Hierauf aufbauend erfolgt der Übergang zu Tragelementen und Tragwerken unter Berücksichtigung der Stabilität und der Theorie II. Ordnung. Anschließend werden die Bemessungskonzepte und Nachweisformate...

Konstruktive Geometrie, Darstellungstechnik, Konstruktives Zeichnen, CAD (Prof. Siebert):

Die Studierenden erhalten eine grundlegende Einführung in die zeichnerische Darstellung technischer Inhalte in Form von Plänen.

Leistungsnachweis

<table>
<thead>
<tr>
<th>Schriftliche Prüfung 120 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 30 Minuten und ein unbenoteter Teilnahmeschein.</th>
</tr>
</thead>
</table>

(Unbenoteter Teilnahmeschein für die Bearbeitung von Studienarbeiten; diese sind Elemente einer "großen Studienarbeit" in Form einer Bauvorlage für ein individuelles Gebäude).

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Massivbau
- Stahlbau
- Holzbau
- alle konstruktiven Fächer
- Statik

Dauer und Häufigkeit

Modulname: Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME</td>
<td>3576</td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule UI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr. techn. Andreas Taras</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>108</td>
<td>102</td>
<td>7</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13961</td>
<td>VL</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>13962</td>
<td>UE</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>25071</td>
<td>VL</td>
<td>Konstruktive Geometrie</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>25072</td>
<td>SU</td>
<td>Darstellungstechnik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>25073</td>
<td>SU</td>
<td>Konstruktives Zeichnen, CAD</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 9

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Fächern Mechanik, Werkstoffe des Bauwesens und die Grundlagen der Baustatik vorausgesetzt.

Qualifikationsziele

Im Modul erwerben die Studierenden grundlegende Kenntnisse zum Tragverhalten einfacher Tragwerke aus Stahl, Holz und Beton und die Fähigkeit, diese selbständig zu dimensionieren und deren Stabilitätsverhalten zu beurteilen.

Außerdem erlernen die Studierenden die Fähigkeit, Pläne und technische Zeichnungen zu lesen und mit Hilfe von CAD selbst zu erstellen. Durch Bearbeitung der Studienarbeiten werden erste Teile einer Bauvorlage (Zeichnungen, Lastannahmen) erarbeitet, die als Elemente einer größeren Aufgabenstellung (Bauvorlage für ein individuelles Musterhaus) das Verständnis für Interaktion der einzelnen Teildisziplinen im Studium und der späteren Tätigkeit als Ingenieur fördern.

Inhalt

Konstruktiver Ingenieurbau (Prof. Taras):

Konstruktive Geometrie, Darstellungstechnik, Konstruktives Zeichnen, CAD (Prof. Siebert):

Die Studierenden erhalten eine grundlegende Einführung in die zeichnerische Darstellung technischer Inhalte in Form von Plänen.

Leistungsnachweis

<table>
<thead>
<tr>
<th>Schriftliche Prüfung 120 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 30 Minuten und ein unbenoteter Teilnahmeschein.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Unbenoteter Teilnahmeschein für die Bearbeitung von Studienarbeiten; diese sind Elemente einer "großen Studienarbeit" in Form einer Bauvorlage für ein individuelles Gebäude).</td>
</tr>
</tbody>
</table>

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Massivbau
- Stahlbau
- Holzbau
- alle konstruktiven Fächer
- Statik

Dauer und Häufigkeit

Modulname
Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME

| Modulnummer | 3576 |

Konto | Wahlpflichtmodule VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr. techn. Andreas Taras</td>
<td>Wahlpflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>108</td>
<td>102</td>
<td>7</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13961</td>
<td>VL</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>13962</td>
<td>UE</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>25071</td>
<td>VL</td>
<td>Konstruktive Geometrie</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>25072</td>
<td>SU</td>
<td>Darstellungstechnik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>25073</td>
<td>SU</td>
<td>Konstruktives Zeichnen, CAD</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)
9

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden fundierte Kenntnisse in den Fächern Mechanik, Werkstoffe des Bauwesens und die Grundlagen der Baustatik vorausgesetzt.

Qualifikationsziele

Im Modul erwerben die Studierenden grundlegende Kenntnisse zum Tragverhalten einfacher Tragwerke aus Stahl, Holz und Beton und die Fähigkeit, diese selbständig zu dimensionieren und deren Stabilitätsverhalten zu beurteilen.

Außerdem erlernen die Studierenden die Fähigkeit, Pläne und technische Zeichnungen zu lesen und mit Hilfe von CAD selbst zu erstellen. Durch Bearbeitung der Studienarbeiten werden erste Teile einer Bauvorlage (Zeichnungen, Lastannahmen) erarbeitet, die als Elemente einer größeren Aufgabenstellung (Bauvorlage für ein individuelles Musterhaus) das Verständnis für Interaktion der einzelnen Teildisziplinen im Studium und der späteren Tätigkeit als Ingenieur fördern.

Inhalt

Konstruktiver Ingenieurbau (Prof. Taras):

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 123 von 230

Konstruktive Geometrie, Darstellungstechnik, Konstruktives Zeichnen, CAD (Prof. Siebert):

Die Studierenden erhalten eine grundlegende Einführung in die zeichnerische Darstellung technischer Inhalte in Form von Plänen.

Leistungsnachweis

Schriftliche Prüfung 120 Minuten und ein unbenoteter Teilnahmeschein oder mündliche Prüfung 30 Minuten und ein unbenoteter Teilnahmeschein.

(Unbenoteter Teilnahmeschein für die Bearbeitung von Studienarbeiten; diese sind Elemente einer "großen Studienarbeit" in Form einer Bauvorlage für ein individuelles Gebäude).

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Massivbau
- Stahlbau
- Holzbau
- alle konstruktiven Fächer
- Statik

Dauer und Häufigkeit

Modulname: Massivbau

<table>
<thead>
<tr>
<th>Konto</th>
<th>Pflichtmodule KI - BAU 2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Thomas Braml</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14021</td>
<td>VL</td>
<td>Massivbau</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>14022</td>
<td>UE</td>
<td>Massivbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden die Lehrinhalte der Module Grundlagen des Konstruktiven Ingenieurbau, Baustatik und Werkstoffe des Bauwesens vorausgesetzt.

Qualifikationsziele

Im Modul Massivbau erwerben die Studierenden die Kompetenz, das Tragverhalten von Stahlbetonkonstruktionen, insbesondere im Hinblick auf die Verbundwirkung, Biegung, Querkraft, Torsion, Flächentragwerke, Stabilität (Theorie II. Ordnung) und Gebrauchstauglichkeit zu beurteilen und Bemessungen für alle relevanten Querschnittsformen und Beanspruchungen im Stahlbetonbau durchzuführen.

Inhalt

Massivbau (Prof. Braml):

Die in der Vorlesung vermittelten Inhalte werden in Übungen an hierauf abgestimmten Beispielen angewandt. Das Lernziel dieses Moduls ist die Vermittlung umfassender Kenntnisse zur Sicherheitstheorie, zum Tragverhalten und zur Bemessung von Stahlbetonkonstruktionen.
Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagesexkursion) stattfinden.

Leistungsnachweis
Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit
Das Modul liefert wesentliche Grundlagen für Vorlesungen der Vertiefungsrichtung Konstruktiver Ingenieurbau im Masterstudium für Bauingenieurwesen und Umweltwissenschaften.

Dauer und Häufigkeit
Modulname: Massivbau

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massivbau</td>
<td>1402</td>
</tr>
</tbody>
</table>

Konto: Pflichtmodule VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Thomas Braml</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14021</td>
<td>VL</td>
<td>Massivbau</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>14022</td>
<td>UE</td>
<td>Massivbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 6

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden die Lehrinhalte der Module Grundlagen des Konstruktiven Ingenieurbau, Baustatik und Werkstoffe des Bauwesens vorausgesetzt.

Qualifikationsziele

Im Modul Massivbau erwerben die Studierenden die Kompetenz, das Tragverhalten von Stahlbetonkonstruktionen, insbesondere im Hinblick auf die Verbundwirkung, Biegung, Querkraft, Torsion, Flächentragwerke, Stabilität (Theorie II. Ordnung) und Gebrauchstauglichkeit zu beurteilen und Bemessungen für alle relevanten Querschnittsformen und Beanspruchungen im Stahlbetonbau durchzuführen.

Inhalt

Massivbau (Prof. Braml):

Die in der Vorlesung vermittelten Inhalte werden in Übungen an hierauf abgestimmten Beispielen angewandt. Das Lernziel dieses Moduls ist die Vermittlung umfassender Kenntnisse zur Sicherheitstheorie, zum Tragverhalten und zur Bemessung von Stahlbetonkonstruktionen.
Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagesexkursion) stattfinden.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul liefert wesentliche Grundlagen für Vorlesungen der Vertiefungsrichtung Konstruktiver Ingenieurbau im Masterstudium für Bauingenieurwesen und Umweltwissenschaften.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulname: Massivbau

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Thomas Braml</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14021</td>
<td>VL</td>
<td>Massivbau</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>14022</td>
<td>UE</td>
<td>Massivbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

| Summe (Pflicht und Wahlpflicht) | 6 |

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden die Lehrinhalte der Module Grundlagen des Konstruktiven Ingenieurbauws, Baustatik und Werkstoffe des Bauwesens vorausgesetzt.

Qualifikationsziele

Im Modul Massivbau erwerben die Studierenden die Kompetenz, das Tragverhalten von Stahlbetonkonstruktionen, insbesondere im Hinblick auf die Verbundwirkung, Biegung, Querkraft, Torsion, Flächentragwerke, Stabilität (Theorie II. Ordnung) und Gebrauchstauglichkeit zu beurteilen und Bemessungen für alle relevanten Querschnittsformen und Beanspruchungen im Stahlbetonbau durchzuführen.

Inhalt

Massivbau (Prof. Braml):

Die in der Vorlesung vermittelten Inhalte werden in Übungen an hierauf abgestimmten Beispielen angewandt. Das Lernziel dieses Moduls ist die Vermittlung umfassender Kenntnisse zur Sicherheitstheorie, zum Tragverhalten und zur Bemessung von Stahlbetonkonstruktionen.
Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagesexkursion) stattfinden.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.</td>
</tr>
</tbody>
</table>

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für Vorlesungen der Vertiefungsrichtung Konstruktiver Ingenieurbau im Masterstudium für Bauingenieurwesen und Umweltwissenschaften.

Dauer und Häufigkeit

Modulname: Materialmodellierung
Modulnummer: 2908

Konto: Wahlpflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. habil. Michael Brünig</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>36</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29081</td>
<td>VL</td>
<td>Materialmodellierung</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>29082</td>
<td>UE</td>
<td>Materialmodellierung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)
3

Empfohlene Voraussetzungen

Grundkenntnisse der Baumechanik I und II

Qualifikationsziele

Inhalt

Materialmodellierung (Prof. Brünig):
- Eindimensionale Versuche
- Mehraxialer Spannungszustand
- Elastisches Stoffgesetz
- Plastisches Stoffgesetz
- Elastisch-plastisches Stoffgesetz
- Anwendungen

Leistungsnachweis

Mündliche Prüfung 20 Minuten oder schriftliche Prüfung 60 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:
- Kontinuumsmechanik und Werkstoffmodelle
- Statik
<table>
<thead>
<tr>
<th>konstruktive Fächer</th>
</tr>
</thead>
</table>

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname

Materialmodellierung

<table>
<thead>
<tr>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2908</td>
</tr>
</tbody>
</table>

Konto

Wahlpflichtmodule UI - BAU 2019

Modulverantwortliche/r

Univ.-Prof. Dr.-Ing. habil. Michael Brünig

Modultyp

Wahlpflicht

Empf. Trimester

6

Workload in (h)

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29081</td>
<td>VL</td>
<td>Materialmodellierung</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>29082</td>
<td>UE</td>
<td>Materialmodellierung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

3

Empfohlene Voraussetzungen

Grundkenntnisse der Baumechanik I und II

Qualifikationsziele

Inhalt

Materialmodellierung (Prof. Brünig):
- Eindimensionale Versuche
- Mehraxialer Spannungszustand
- Elastisches Stoffgesetz
- Plastisches Stoffgesetz
- Elastisch-plastisches Stoffgesetz
- Anwendungen

Leistungsnachweis

Mündliche Prüfung 20 Minuten oder schriftliche Prüfung 60 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:
- Kontinuumsmechanik und Werkstoffmodelle
- Statik
<table>
<thead>
<tr>
<th>• konstruktive Fächer</th>
</tr>
</thead>
</table>

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Materialmodellierung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialmodellierung</td>
<td>2908</td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. habil. Michael Brünig

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. habil. Michael Brünig</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>36</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29081</td>
<td>VL</td>
<td>Materialmodellierung</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>29082</td>
<td>UE</td>
<td>Materialmodellierung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 3

Empfohlene Voraussetzungen:
Grundkenntnisse der Baumechanik I und II

Qualifikationsziele:

Inhalt:
Materialmodellierung (Prof. Brünig):
- Eindimensionale Versuche
- Mehraxialer Spannungszustand
- Elastisches Stoffgesetz
- Plastisches Stoffgesetz
- Elastisch-plastisches Stoffgesetz
- Anwendungen

Leistungsnachweis:
Mündliche Prüfung 20 Minuten oder schriftliche Prüfung 60 Minuten.

Verwendbarkeit:
Das Modul liefert wesentliche Grundlagen für:
- Kontinuumsmechanik und Werkstoffmodelle
- Statik

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 135 von 230
<table>
<thead>
<tr>
<th>konstruktive Fächer</th>
</tr>
</thead>
</table>

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Mathematik I

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Mathematik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>1291</td>
<td></td>
</tr>
</tbody>
</table>

Konto Pflichtmodule Kl, Ul und VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr. rer. nat. Matthias Gerdts</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12911</td>
<td>VL</td>
<td>Mathematik I</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>12912</td>
<td>UE</td>
<td>Mathematik I (EIT)</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>12913</td>
<td>UE</td>
<td>Mathematik I (LRT)</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>12914</td>
<td>UE</td>
<td>Mathematik I (BAU)</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 6

Voraussetzungen laut Prüfungsordnung

keine

Empfohlene Voraussetzungen

Abiturkenntnisse Mathematik

Qualifikationsziele

Die Studierenden kennen die grundlegenden Konzepte und Methoden der Linearen Algebra zur mathematischen Beschreibung naturwissenschaftlich-technischer Strukturen und Prozesse in den Ingenieurwissenschaften.

Inhalt

- **Zahlen und Vektoren**
 - Mengen und Abbildungen
 - reelle und komplexe Zahlen
 - vollständige Induktion
 - Binomialkoeffizienten
 - Vektoren

- **Lineare Algebra**
 - Matrizen und Matrixmultiplikation

Stand: 09. Juli 2019
- lineare Gleichungssysteme
- Vektorräume
- Determinanten
- lineare Abbildungen und Eigenwerte

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fischer: Lineare Algebra, Vieweg Verlag.</td>
</tr>
<tr>
<td>- Jänich: Mathematik 1, Springer Verlag.</td>
</tr>
<tr>
<td>- Meyberg, Vachenauer: Höhere Mathematik 1, Springer Verlag.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten (die Art der Prüfung wird rechtzeitig bekanntgegeben).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtmodul in den Bachelorstudiengängen BAU, EIT und LRT.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbstsemester. Als Startzeitpunkt ist das Herbstsemester im 1. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Mathematik II

| Modulnummer | 1292 |

Konto
Pflichtmodule KI, UI und VI - BAU 2019

Modulverantwortliche/r
Univ.-Prof. Dr. rer. nat. Dr.-Ing. Stefan Schäffler

#### Modultyp	Empf. Trimester
Pflicht | 1

#### Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
150 | 72 | 78 | 5

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12921</td>
<td>VL</td>
<td>Mathematik II</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>12922</td>
<td>UE</td>
<td>Mathematik II (EIT)</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>12923</td>
<td>UE</td>
<td>Mathematik II (LRT)</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>12924</td>
<td>UE</td>
<td>Mathematik II (BAU)</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 6

Voraussetzungen laut Prüfungsordnung
keine

Empfohlene Voraussetzungen
Abiturkenntnisse Mathematik

Qualifikationsziele
Mathematische Kenntnisse über die Analysis einer reellen Veränderlichen, über gewöhnliche Differentialgleichungen und über spezielle Transformationen, die im weiteren Studium und in der beruflichen Praxis unabdingbar sind.

Inhalt

Analysis einer reellen Veränderlichen

- Funktionen, Grenzwerte, Stetigkeit
- Differentiation
- Potenzreihen
- Integration

Gewöhnliche Differentialgleichungen

- Gewöhnliche Differentialgleichungen n-ter Ordnung
- Gewöhnliche Differentialgleichungssysteme

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 139 von 230
- lineare Differentialgleichungssysteme mit konstanten Koeffizienten
- Stabilität
Transformationen
- Laplace-Transformation
- Fourier-Transformation

Literatur
- Jänich: Analysis für Physiker und Ingenieure, Springer Verlag.
- Apel, Richter, Schäffler: Skriptum

Leistungsnachweis
Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten (die Art der Prüfung wird rechtzeitig bekanntgegeben).

Verwendbarkeit
Pflichtmodul in den Bachelorstudiengängen BAU, EIT und LRT.

Dauer und Häufigkeit
Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbstsemester. Als Startzeitpunkt ist das Herbstsemester im 1. Studienjahr vorgesehen.
Modulname
Mathematik III

Modulnummer
1293

Konto
Pflichtmodule KI, UI und VI - BAU 2019

Modulverantwortliche/r
Prof. Dr. rer. nat. habil. Thomas Apel

Modultyp
Empf. Trimester
Pflicht
2

Workload in (h)
Präsenzzeit in (h)
Selbststudium in (h)
ECTS-Punkte
150
72
78
5

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12931</td>
<td>VL</td>
<td>Mathematik III</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>12932</td>
<td>UE</td>
<td>Mathematik III (EIT)</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>12933</td>
<td>UE</td>
<td>Mathematik III (LRT)</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>12934</td>
<td>UE</td>
<td>Mathematik III (BAU)</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen
- Modul 1291: Mathematik I
- Modul 1292: Mathematik II

Qualifikationsziele

Die Studierenden kennen den Begriff des Tensors und können grundlegende Rechenoperationen mit Tensoren ausführen.

Inhalt
Analysis mehrerer reeller Veränderlicher
 - Differentiation
 - Integration

Einführung in die Tensorrechnung

Literatur
<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten (die Art der Prüfung wird rechtzeitig bekanntgegeben).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtmodul in den Bachelorstudiengängen BAU, EIT und LRT.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Wintertrimester. Als Startzeitpunkt ist das Wintertrimester im 1. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Modellierung von Unsicherheiten und Daten

Modulnummer: 3789

Konto: Wahlpflichtmodule KI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. Alexander Popp

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h)	Präsenzzeit in (h)	Selbststudium in (h)	ECTS-Punkte
90 | 48 | 42 | 3 |

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37891</td>
<td>VL</td>
<td>Modellierung von Unsicherheiten und Daten</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37892</td>
<td>P</td>
<td>Algorithmen zur Modellierung von Unsicherheiten und Daten</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 4

Empfohlene Voraussetzungen

Qualifikationsziele

Des Weiteren werden Studierende nach erfolgreichem Abschluss dieses Moduls in der Lage sein, datenbasierte Regressions- und Klassifizierungsmodelle zu konstruieren sowie Dimensionsreduktion großer Datenmengen durchzuführen.

Schließlich erwerben Studierende die Fähigkeit, die genannten Teilbereiche und Methoden eigenständig in MATLAB zu implementieren und auf Probleme aus dem ingenieurwissenschaftlichen Alltag anzuwenden.

Inhalt

Quantifizierung von Unsicherheiten (Dr. M. Mayr)

- Motivation: Entscheidungsfindung unter Unsicherheiten
- Modellierung von Unsicherheiten
<table>
<thead>
<tr>
<th>Modulname: Modellierung von Unsicherheiten und Daten</th>
</tr>
</thead>
</table>

- Monte Carlo
- Abschätzung und Modellbildung

Maschinelles Lernen aus Daten (Dr. M. Mayr)

- Regression
- Klassifizierung
- Dimensionsreduktion

Entwicklungen und Trends (Dr. M. Mayr)

- Chancen und Risiken: UQ/ML/AI in der gesellschaftlichen und medialen Diskussion

Neben der Teilnahme an der Vorlesung bearbeiten die Studierenden im Verlaufe des Trimesters ein Praxisprojekt im Rahmen eines verpflichtenden Praktikums „Algorithmen zur Modellierung von Unsicherheiten und Daten“, welches durch einen schriftlichen Praktikumsbericht abgeschlossen wird.

Leistungsnachweis

Teilnahmebescheinigung über die Praktikumsteilnahme mit schriftlichem Abschlussbericht. Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 20 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert dauer 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen. Bei Bedarf kann die Abhaltung des Moduls auch ins Herbsttrimester verlegt werden.

Sonstige Bemerkungen

Das Modul ist für Studierende der Bachelorstudiengänge BAU und ME geeignet.
Modulname: Modellierung von Unsicherheiten und Daten

<table>
<thead>
<tr>
<th>Konto</th>
<th>Wahlpflichtmodule UI - BAU 2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Alexander Popp</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37891</td>
<td>VL</td>
<td>Modellierung von Unsicherheiten und Daten</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37892</td>
<td>P</td>
<td>Algorithmen zur Modellierung von Unsicherheiten und Daten</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 4

Empfohlene Voraussetzungen

Qualifikationsziele

Des Weiteren werden Studierende nach erfolgreichem Abschluss dieses Moduls in der Lage sein, datenbasierte Regressions- und Klassifizierungsmodelle zu konstruieren sowie Dimensionsreduktion großer Datenmengen durchzuführen.

Schließlich erwerben Studierende die Fähigkeit, die genannten Teilbereiche und Methoden eigenständig in MATLAB zu implementieren und auf Probleme aus dem ingenieurwissenschaftlichen Alltag anzuwenden.

Inhalt

Quantifizierung von Unsicherheiten (Dr. M. Mayr)

- Motivation: Entscheidungsfindung unter Unsicherheiten
- Modellierung von Unsicherheiten
<table>
<thead>
<tr>
<th>Modulname: Modellierung von Unsicherheiten und Daten</th>
</tr>
</thead>
</table>

| • Monte Carlo |
| • Abschätzung und Modellbildung |

Maschinelles Lernen aus Daten (Dr. M. Mayr)

| • Regression |
| • Klassifizierung |
| • Dimensionsreduktion |

Entwicklungen und Trends (Dr. M. Mayr)

| • Chancen und Risiken: UQ/ML/AI in der gesellschaftlichen und medialen Diskussion |

Neben der Teilnahme an der Vorlesung bearbeiten die Studierenden im Verlaufe des Trimesters ein Praxisprojekt im Rahmen eines verpflichtenden Praktikums „Algorithmen zur Modellierung von Unsicherheiten und Daten“, welches durch einen schriftlichen Praktikumsbericht abgeschlossen wird.

Leistungsnachweis

Teilnahmebescheinigung über die Praktikumsteilnahme mit schriftlichem Abschlussbericht. Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 20 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert dauer 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen. Bei Bedarf kann die Abhaltung des Moduls auch ins Herbstsemester verlegt werden.

Sonstige Bemerkungen

Das Modul ist für Studierende der Bachelorstudiengänge BAU und ME geeignet.
Modulname:

<table>
<thead>
<tr>
<th>Modellierung von Unsicherheiten und Daten</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3789</td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r

| Univ.-Prof. Dr.-Ing. Alexander Popp |

Modultyp

<table>
<thead>
<tr>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflicht</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h)

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37891</td>
<td>VL</td>
<td>Modellierung von Unsicherheiten und Daten</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37892</td>
<td>P</td>
<td>Algorithmen zur Modellierung von Unsicherheiten und Daten</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Qualifikationsziele

Des Weiteren werden Studierende nach erfolgreichem Abschluss dieses Moduls in der Lage sein, datenbasierte Regressions- und Klassifizierungsmodelle zu konstruieren sowie Dimensionsreduktion großer Datenmengen durchzuführen.

Schließlich erwerben Studierende die Fähigkeit, die genannten Teilbereiche und Methoden eigenständig in MATLAB zu implementieren und auf Probleme aus dem ingenieurwissenschaftlichen Alltag anzuwenden.

Inhalt

Quantifizierung von Unsicherheiten (Dr. M. Mayr)

- Motivation: Entscheidungsfindung unter Unsicherheiten
- Modellierung von Unsicherheiten
B.Sc. Bauingenieurwesen und Umweltwissenschaften 2019

Modulname: Modellierung von Unsicherheiten und Daten

- Monte Carlo
- Abschätzung und Modellbildung

Maschinelles Lernen aus Daten (Dr. M. Mayr)

- Regression
- Klassifizierung
- Dimensionsreduktion

Entwicklungen und Trends (Dr. M. Mayr)

- Chancen und Risiken: UQ/ML/AI in der gesellschaftlichen und medialen Diskussion

Neben der Teilnahme an der Vorlesung bearbeiten die Studierenden im Verlaufe des Trimesters ein Praxisprojekt im Rahmen eines verpflichtenden Praktikums „Algorithmen zur Modellierung von Unsicherheiten und Daten“, welches durch einen schriftlichen Praktikumsbericht abgeschlossen wird.

Leistungsnachweis

Teilnahmebescheinigung über die Praktikumsteilnahme mit schriftlichem Abschlussbericht. Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 20 Minuten.

Verwendbarkeit

Dauer und Häufigkeit

Das Modul dauert dauer 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen. Bei Bedarf kann die Abhaltung des Moduls auch ins Herbstsemester verlegt werden.

Sonstige Bemerkungen

Das Modul ist für Studierende der Bachelorstudiengänge BAU und ME geeignet.
Modulname: Multimodale Verkehrssysteme

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3747</td>
<td>Multimodale Verkehrssysteme</td>
<td></td>
</tr>
</tbody>
</table>

Konto: Pflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Silja Hoffmann</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37471</td>
<td>VL</td>
<td>Multimodalität und Verkehrsmittelwahl</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37472</td>
<td>UE</td>
<td>Multimodalität und Verkehrsmittelwahl</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>37473</td>
<td>VL</td>
<td>Verkehrssysteme</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37474</td>
<td>UE</td>
<td>Verkehrssysteme</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Grundlagen des Verkehrswesens, wie sie in den Modulen "Grundlagen des Verkehrswesens und der Raumplanung I" sowie "Grundlagen des Verkehrswesens und der Raumplanung II" vermittelt werden.

Qualifikationsziele

Inhalt

Multimodalität und Verkehrsmittelwahl (WT – 5. Trimester)
- Verkehrsentwicklung, Statistiken und Hintergründe
- Verkehrsbelastung
- Wie viel Platz braucht Verkehr? Wie viel Verkehr vertragen wir?
- Verkehrsmittel, Mobilität in Deutschland
- Ermittlung und Beeinflussung der Verkehrsnachfrage
- Verkehrsverhalten (Wahrnehmung, Verkehrssicherheit)

Verkehrssysteme (FT – 6. Trimester)
- Einführung
- Entwicklung unserer Verkehrssysteme
• Entwurf des Verkehrsangebots Grundlagen
• Individualverkehr: IV, mIV, Radverkehr, Fußgänger
• Verkehrsstraßen und Erschließungsstraßen
• Straßenraumgestaltung, Verkehrsberuhigung, Shared Space
• Planung des ruhenden Verkehrs
• Öffentliche Verkehrssysteme: Entwurf von ÖV Liniennetzen, Entwurf von ÖPNV Fahrplänen
• Multimodal und intermodal
• Verknüpfungspunkte
• Ausblick: neue Verkehrssysteme, Einfluss Automatisierung, MaaS

Leistungsnachweis
Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit
Das Modul vermittelt Grundlagen für interdisziplinäres Arbeiten im Verkehrsbereich, insbesondere zur Bearbeitung des Interdisziplinären Projekts Verkehrsentwurf.

Dauer und Häufigkeit
Modulname: Multimodale Verkehrssysteme

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimodale Verkehrssysteme</td>
<td>3747</td>
</tr>
</tbody>
</table>

Konto Pflichtmodule VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. Silja Hoffmann

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37471</td>
<td>VL</td>
<td>Multimodalität und Verkehrsmittelwahl</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37472</td>
<td>UE</td>
<td>Multimodalität und Verkehrsmittelwahl</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>37473</td>
<td>VL</td>
<td>Verkehrssysteme</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37474</td>
<td>UE</td>
<td>Verkehrssysteme</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Grundlagen des Verkehrswesens, wie sie in den Modulen "Grundlagen des Verkehrswesens und der Raumplanung I" sowie "Grundlagen des Verkehrswesens und der Raumplanung II" vermittelt werden.

Qualifikationsziele

Inhalt

Multimodalität und Verkehrsmittelwahl (WT – 5. Trimester)
- Verkehrsentwicklung, Statistiken und Hintergründe
- Verkehrsbelastung
- Wie viel Platz braucht Verkehr? Wieviel Verkehr vertragen wir?
- Verkehrsmittel, Mobilität in Deutschland
- Ermittlung und Beeinflussung der Verkehrsaufgabe
- Verkehrsverhalten (Wahrnehmung, Verkehrssicherheit)

Verkehrssysteme (FT – 6. Trimester)
- Einführung
- Entwicklung unserer Verkehrssysteme
Modulname: Multimodale Verkehrssysteme

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.</td>
</tr>
</tbody>
</table>

Verwendbarkeit

Das Modul vermittelt Grundlagen für interdisziplinäres Arbeiten im Verkehrsbereich, insbesondere zur Bearbeitung des Interdisziplinären Projekts Verkehrsentwurf.

Dauer und Häufigkeit

Modulname: Multimodale Verkehrssysteme

Modulnummer: 3747

Konto: Wahlpflichtmodule UI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Silja Hoffmann</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37471</td>
<td>VL</td>
<td>Multimodalität und Verkehrsmittelwahl</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37472</td>
<td>UE</td>
<td>Multimodalität und Verkehrsmittelwahl</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>37473</td>
<td>VL</td>
<td>Verkehrssysteme</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37474</td>
<td>UE</td>
<td>Verkehrssysteme</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 6

Empfohlene Voraussetzungen
Grundlagen des Verkehrswesens, wie sie in den Modulen "Grundlagen des Verkehrswesens und der Raumplanung I" sowie "Grundlagen des Verkehrswesens und der Raumplanung II" vermittelt werden.

Qualifikationsziele

Inhalt
Multimodalität und Verkehrsmittelwahl (WT – 5. Trimester)
- Verkehrsentwicklung, Statistiken und Hintergründe
- Verkehrsbelastung
- Wie viel Platz braucht Verkehr? Wieviel Verkehr vertragen wir?
- Verkehrsmittel, Mobilität in Deutschland
- Ermittlung und Beeinflussung der Verkehrsnachfrage
- Verkehrsverhalten (Wahrnehmung, Verkehrssicherheit)

Verkehrssysteme (FT – 6. Trimester)
- Einführung
- Entwicklung unserer Verkehrssysteme
• Entwurf des Verkehrsangebots Grundlagen
• Individualverkehr: IV, mIV, Radverkehr, Fußgänger
• Verkehrsstraßen und Erschließungsstraßen
• Straßenraumgestaltung, Verkehrsberuhigung, Shared Space
• Planung des ruhenden Verkehrs
• Öffentliche Verkehrssysteme: Entwurf von ÖV Liniennetzen, Entwurf von ÖPNV Fahrplänen
• Multimodal und intermodal
• Verknüpfungspunkte
• Ausblick: neue Verkehrssysteme, Einfluss Automatisierung, MaaS

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Das Modul vermittelt Grundlagen für interdisziplinäres Arbeiten im Verkehrsbereich, insbesondere zur Bearbeitung des Interdisziplinären Projekts Verkehrsentwurf.

Dauer und Häufigkeit

Modulname: Programmieren und Statistik
Modulnummer: 3799

Konto
Pflichtmodule KI, UI und VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Alexander Popp</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12891</td>
<td>VL</td>
<td>Programmieren</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>12892</td>
<td>UE</td>
<td>Programmieren</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>12893</td>
<td>VL</td>
<td>Statistik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>12894</td>
<td>UE</td>
<td>Statistik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 6

Empfohlene Voraussetzungen

Qualifikationsziele

Inhalt
Programmieren und Statistik sind in dem Modul eng miteinander verzahnt. Einerseits dienen Aufgaben aus der Statistik als Beispiele für die Programmierung, andererseits werden statistische Verfahren beispielhaft auf die Beurteilung von Rechenprogrammen angewendet. Im Einzelnen sind folgende Themen Inhalt der Lehrveranstaltung:

Programmieren:

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 155 von 230
• Benutzung von MATLAB als Taschenrechner
• Datentypen, Deklaration, Ausdrücke, Zuweisung
• Vektoren und Matrizen in MATLAB
• Graphische Ausgabe in MATLAB
• Einfache Algorithmen und Ablaufsteuerung: Iteration, Verzweigung, Rekursion
• Unterprogramme, Funktionen, Parameterübergabe
• Speichern/Einlesen in MATLAB
• Beispiele aus der numerischen Mathematik und Baumechanik
• Grundideen der objektorientierten Programmierung

Statistik:

• Zufall, Wahrscheinlichkeitsbegriff und Kombinatorik
• Bedingte Wahrscheinlichkeit und stochastische Unabhängigkeit
• Diskrete Zufallsvariablen und deren Beschreibung
• Kontinuierliche Zufallsvariablen und deren Beschreibung
• Wichtige Kenngrößen einer Wahrscheinlichkeitsverteilung
• Mehrdimensionale Zufallsgrößen
• Beschreibende Statistik und graphische Darstellung von Daten
• Induktive Statistik: Schätzung und Testverfahren
• Nutzung von MATLAB für statistische Fragestellungen in der Praxis

Leistungsnachweis
Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit
Für alle weiterführenden Lehrveranstaltungen. Grundlage für Projekt- und Bachelorarbeit.

Dauer und Häufigkeit
Modulname: Seminar studium plus 1

Konto: Studium+ Bachelor

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentralinstitut Studium+</td>
<td>Pflicht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Stunden</td>
<td>36</td>
<td>54</td>
<td>3</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Die Studierenden erwerben personale, soziale oder methodische Kompetenzen, um das Studium als starke, mündige Persönlichkeit zu verlassen. Die *studium plus*-Seminare bereiten die Studierenden dadurch auf ihre Berufs- und Lebenswelt vor und ergänzen die im Studium erworbenen Fachkenntnisse.

Durch die Vermittlung von Horizontwissen wird die eingeschränkte Perspektive des Fachstudiums erweitert. Dadurch lernen die Studierenden, das im Fachstudium erworbenen Wissen in einem komplexen Zusammenhang einzuordnen und in Relation zu den anderen Wissenschaften zu sehen.

Durch die exemplarische Auseinandersetzung mit gesellschaftsrelevanten Fragen erwerben die Studierenden die Kompetenz, diese kritisch zu bewerten, sich eine eigene Meinung zu bilden und diese engagiert zu vertreten. Das dabei erworben Wissen hilft, Antworten auch auf andere gesellschaftsrelevante Fragestellungen zu finden.

Durch die Steigerung der Partizipationsfähigkeit wird die mündige Teilhabe an sozialen, kulturellen und politischen Prozessen der modernen Gesellschaft gefördert.

Inhalt

Die *studium plus*-Seminare bieten Lerninhalte, die Horizont- oder Orientierungswissen vermitteln bzw. die Partizipationsfähigkeit steigern. Sämtliche Inhalte sind auf den Erwerb personaler, sozialer oder methodischer Kompetenzen ausgerichtet. Sie bilden die Persönlichkeit und erhöhen die Beschäftigungsfähigkeit.

Einen detaillierten Überblick bietet das jeweils gültige Seminarangebot von *studium plus*, das von Trimester zu Trimester neu erstellt und den Erfordernissen der künftigen Berufswelt sowie der Interessenslage der Studierenden angepasst wird.
Leistungsnachweis

- In Seminaren werden Notenscheine erworben.
- Die Leistungsnachweise, durch die der Notenschein erworben werden kann, legt der/die Dozent/in in Absprache mit dem Zentralinstitut studium plus vor Beginn des Einschreibeverfahrens für das Seminar fest. Hierbei sind folgende wie auch weitere Formen sowie Mischformen möglich: Klausur, mündliche Prüfung, Hausarbeit, Referat, Projektbericht, Gruppenarbeit, Mitarbeit in der Lehrveranstaltung etc. Bei Mischformen erhält der Studierende verbindliche Angaben darüber, mit welchem prozentualen Anteil die jeweilige Teilleistungen gewichtet werden.
- Für den HAW-Bereich gelten abweichend folgende Leistungsnachweise: Seminararbeit, Referat oder Portfolio.
- Der Erwerb des Scheins ist an die regelmäßige Anwesenheit im Seminar gekoppelt.
- Bei der während des Einschreibeverfahrens stattfindenden Auswahl der Seminare durch die Studierenden erhalten diese verbindliche Informationen über die Modalitäten des Scheinerwerbs für jedes angebotene Seminar.

Verwendbarkeit

Das Modul ist für sämtliche Bachelorstudiengänge gleichermaßen geeignet.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester. Als Startzeitpunkt ist das Wintersemester im 1. Studienjahr vorgesehen.
Modulname: Seminar studium plus 2, Training

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminar studium plus 2, Training</td>
<td>1005</td>
</tr>
</tbody>
</table>

Konto: Studium+ Bachelor

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentralinstitut Studium+</td>
<td></td>
<td>Pflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 Stunden</td>
<td>72 Stunden</td>
<td>78 Stunden</td>
<td>5</td>
</tr>
</tbody>
</table>

Qualifikationsziele

studium plus- Seminare:

Die Studierenden erwerben personale, soziale oder methodische Kompetenzen, um das Studium als starke, mündige Persönlichkeit zu verlassen. Die studium plus- Seminare bereiten die Studierenden dadurch auf ihre Berufs- und Lebenswelt vor und ergänzen die im Studium erworbenen Fachkenntnisse.

Durch die Vermittlung von Horizontwissen wird die eingeschränkte Perspektive des Fachstudiums erweitert. Dadurch lernen die Studierenden, das im Fachstudium erworbenen Wissen in einem komplexen Zusammenhang einzuordnen und in Relation zu den anderen Wissenschaften zu sehen.

Durch die exemplarische Auseinandersetzung mit gesellschaftsrelevanten Fragen erwerben die Studierenden die Kompetenz, diese kritisch zu bewerten, sich eine eigene Meinung zu bilden und diese engagiert zu vertreten. Das dabei ererbte Wissen hilft, Antworten auch auf andere gesellschaftsrelevante Fragestellungen zu finden.

Durch die Steigerung der Partizipationsfähigkeit wird die mündige Teilhabe an sozialen, kulturellen und politischen Prozessen der modernen Gesellschaft gefördert.

studium plus- Trainings:

Die Studierenden erwerben personale, soziale und methodische Kompetenzen, um als Führungskräfte auch unter komplexen und teils widersprüchlichen Anforderungen handlungsfähig zu bleiben bzw. um ihre Handlungskompetenz wiederzuerlangen.

Damit ergänzt das Trainingsangebot die im Rahmen des Studiums erworbenen Fachkenntnisse insofern, als diese fachlichen Kenntnisse von den Studierenden in einen berufspraktischen Kontext eingebettet werden können und Möglichkeiten zur Reflexion des eigenen Handelns angeboten werden.

Inhalt

Die **studium plus -Seminare** bieten Lerninhalte, die Horizont- oder Orientierungswissen vermitteln bzw. die Partizipationsfähigkeit an Diskussionen über wichtige aktuelle Themen steigern. Sämtliche Inhalte sind auf den Erwerb personaler, sozialer oder

Die **studium plus- Trainings** entsprechen den Trainings für Führungskräfte in modernen Unternehmen und bieten berufsrelevante und an den Themen der aktuellen Führungskräfteentwicklung von Organisationen und Unternehmen orientierte Lerninhalte.

Leistungsnachweis

studium plus- Seminare:

- In Seminaren werden Notenscheine erworben.
- Für den HAW-Bereich gelten abweichend folgende Leistungsnachweise: Seminararbeit oder Portfolio.
- Der Erwerb des Scheins ist an die regelmäßige Anwesenheit im Seminar gekoppelt.
- Bei der während des Einschreibeverfahrens stattfindenden Auswahl der Seminare durch die Studierenden erhalten diese verbindliche Informationen über die Modalitäten des Scheinerwerbs für jedes angebotene Seminar.

studium plus- Trainings:

- Die Trainings sind unbenotet, die Zuerkennung der ECTS-Leistungspunkte ist aber an die Teilnahme an der gesamten Trainingszeit gekoppelt (Teilnahmeschein).

Verwendbarkeit

Das Modul ist für sämtliche Bachelorstudiengänge gleichermaßen geeignet.

Dauer und Häufigkeit

Modulname
Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften I

| Modulnummer | 2946 |

Konto
Wahlpflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Otto Heunecke</td>
<td>Wahlpflicht</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen
Es wird empfohlen, vor der Teilnahme an einem außeruniversitären Modul die Anrechenbarkeit und geeignete Form des Leistungsnachweises mit dem Modulverantwortlichen zu besprechen.

Qualifikationsziele

Inhalt
Die Studierenden haben die Gelegenheit, spezielle Lehrinhalte im Bereich des Bauingenieurwesens und der Umweltwissenschaften außerhalb des Studienangebots der Fakultät der Universität der Bundeswehr München kennen zu lernen, sich anzueignen und im Wahlpflichtbereich des Bachelor-Studiums zu Anrechnung einzubringen.

Leistungsnachweis
Die an einer anderen Universität erbrachten Leistungen werden auf Antrag des Studierenden anerkannt, sofern die eingebrachten Inhalte dem Bauingenieurwesen und den Umweltwissenschaften zugeordnet werden können und der erbrachte Leistungsnachweis als geeignet angesehen werden kann. Der Antrag bedarf der Schriftform.

Verwendbarkeit
Aabbrundung der Studieninhalte nach individueller Interessenlage der Studierenden.

Dauer und Häufigkeit
Das Modul dauert 1 Trimester bzw. Semester. Beginn jederzeit im Studienjahr.
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften I</td>
<td>2946</td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule UI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Otto Heunecke</td>
<td>Wahlpflicht</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen
Es wird empfohlen, vor der Teilnahme an einem außeruniversitären Modul die Anrechenbarkeit und geeignete Form des Leistungsnachweises mit dem Modulverantwortlichen zu besprechen.

Qualifikationsziele

Inhalt
Die Studierenden haben die Gelegenheit, spezielle Lehrinhalte im Bereich des Bauingenieurwesens und der Umweltwissenschaften außerhalb des Studienangebots der Fakultät der Universität der Bundeswehr München kennen zu lernen, sich anzueignen und im Wahlpflichtbereich des Bachelor-Studiums zu Anrechnung einzubringen.

Leistungsnachweis
Die an einer anderen Universität erbrachten Leistungen werden auf Antrag des Studierenden anerkannt, sofern die eingebrachten Inhalte dem Bauingenieurwesens und den Umweltwissenschaften zugeordnet werden können und der erbrachte Leistungsnachweis als geeignet angesehen werden kann. Der Antrag bedarf der Schriftform.

Verwendbarkeit
Abwendung der Studieninhalte nach individueller Interessenlage der Studierenden.

Dauer und Häufigkeit
Das Modul dauert 1 Trimester bzw. Semester. Beginn jederzeit im Studienjahr.
Modulname: Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften I

Konto | Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Otto Heunecke</td>
<td>Wahlpflicht 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Es wird empfohlen, vor der Teilnahme an einem außeruniversitären Modul die Anrechenbarkeit und geeignete Form des Leistungsnachweises mit dem Modulverantwortlichen zu besprechen.

Qualifikationsziele

Inhalt

Die Studierenden haben die Gelegenheit, spezielle Lehrinhalte im Bereich des Bauingenieurwesens und der Umweltwissenschaften außerhalb des Studienangebots der Fakultät der Universität der Bundeswehr München kennen zu lernen, sich anzueignen und im Wahlpflichtbereich des Bachelor-Studiums zu Anrechnung einzubringen.

Leistungsnachweis

Die an einer anderen Universität erbrachten Leistungen werden auf Antrag des Studierenden anerkannt, sofern die eingebrachten Inhalte dem Bauingenieurwesen und den Umweltwissenschaften zugeordnet werden können und der erbrachte Leistungsnachweis als geeignet angesehen werden kann. Der Antrag bedarf der Schriftform.

Verwendbarkeit

Abrundung der Studieninhalte nach individueller Interessenlage der Studierenden.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester bzw. Semester. Beginn jederzeit im Studienjahr.

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 163 von 230
Modulname: Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften II

Konto | Wahlpflichtmodule KI - BAU 2019

Modulverantwortliche/r | Modultyp | Empf. Trimester
Univ.-Prof. Dr.-Ing. Otto Heunecke | Wahlpflicht | 0

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen
Es wird empfohlen, vor der Teilnahme an einem außeruniversitären Modul die Anrechenbarkeit und geeignete Form des Leistungsnachweises mit dem Modulverantwortlichen zu besprechen.

Qualifikationsziele

Inhalt
Die Studierenden haben die Gelegenheit, spezielle Lehrinhalte im Bereich des Bauingenieurwesens und der Umweltwissenschaften außerhalb des Studienangebots der Fakultät der Universität der Bundeswehr München kennen zu lernen, sich anzueignen und im Wahlpflichtbereich des Bachelor-Studiums zur Anrechnung einzubringen.

Leistungsnachweis
Die an einer anderen Universität erbrachten Leistungen werden auf Antrag des Studierenden anerkannt, sofern die eingebrachten Inhalte dem Bauingenieurwesen und den Umweltwissenschaften zugeordnet werden können und der erbrachte Leistungsnachweis als geeignet angesehen werden kann. Der Antrag bedarf der Schriftform.

Verwendbarkeit
Abrundung der Studieninhalte nach individueller Interessenlage der Studierenden.

Dauer und Häufigkeit
Das Modul dauert 1 Trimester bzw. Semester. Beginn jederzeit im Studienjahr.
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften II</td>
<td>2947</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Konto</th>
<th>Wahlpflichtmodule UI - BAU 2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Otto Heunecke</td>
<td>Wahlpflicht</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Es wird empfohlen, vor der Teilnahme an einem außeruniversitären Modul die Anrechenbarkeit und geeignete Form des Leistungsnachweises mit dem Modulverantwortlichen zu besprechen.

Qualifikationsziele

Inhalt

Die Studierenden haben die Gelegenheit, spezielle Lehrinhalte im Bereich des Bauingenieurwesens und der Umweltwissenschaften außerhalb des Studienangebots der Fakultät der Universität der Bundeswehr München kennen zu lernen, sich anzueignen und im Wahlpflichtbereich des Bachelor-Studiums zur Anrechnung einzubringen.

Leistungsnachweis

Die an einer anderen Universität erbrachten Leistungen werden auf Antrag des Studierenden anerkannt, sofern die eingebrachten Inhalte dem Bauingenieurwesen und den Umweltwissenschaften zugeordnet werden können und der erbrachte Leistungsnachweis als geeignet angesehen werden kann. Der Antrag bedarf der Schriftform.

Verwendbarkeit

Abwendung der Studieninhalte nach individueller Interessenlage der Studierenden.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester bzw. Semester. Beginn jederzeit im Studienjahr.
Modulname: Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften II

<table>
<thead>
<tr>
<th>Konto</th>
<th>Wahlpflichtmodule VI - BAU 2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Otto Heunecke</td>
<td>Wahlpflicht</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen
Es wird empfohlen, vor der Teilnahme an einem außeruniversitären Modul die Anrechenbarkeit und geeignete Form des Leistungsnachweises mit dem Modulverantwortlichen zu besprechen.

Qualifikationsziele

Inhalt
Die Studierenden haben die Gelegenheit, spezielle Lehrinhalte im Bereich des Bauingenieurwesens und der Umweltwissenschaften außerhalb des Studienangebots der Fakultät der Universität der Bundeswehr München kennen zu lernen, sich anzueignen und im Wahlpflichtbereich des Bachelor-Studiums zur Anrechnung einzubringen.

Leistungsnachweis
Die an einer anderen Universität erbrachten Leistungen werden auf Antrag des Studierenden anerkannt, sofern die eingebrachten Inhalte dem Bauingenieurwesen und den Umweltwissenschaften zugeordnet werden können und der erbrachte Leistungsnachweis als geeignet angesehen werden kann. Der Antrag bedarf der Schriftform.

Verwendbarkeit
Abrundung der Studieninhalte nach individueller Interessenlage der Studierenden.

Dauer und Häufigkeit
Das Modul dauert 1 Trimester bzw. Semester. Beginn jederzeit im Studienjahr.
Modulname: Stahlbau

| Modulnummer | 3745 |

Konto: Pflichtmodule KI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr. techn. Andreas Taras

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37451</td>
<td>VL</td>
<td>Stahlbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37452</td>
<td>UE</td>
<td>Stahlbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 4

Empfohlene Voraussetzungen:

Für eine erfolgreiche Teilnahme werden die Lehrinhalte des Moduls Grundlagen des Konstruktiven Ingenieurbau vorausgesetzt.

Qualifikationsziele:

Inhalt:

Es werden - aufbauend auf die Inhalte der Vorlesung Grundlagen des Konstruktiven Ingenieurbau - die Hintergründe und die praktische Anwendung der Nachweiskonzepte für Tragelemente aus Stahl dargestellt. Fertigungsbedingte Randbedingungen und materialbedingte Unterschiede bei der Wahl der Bauteildimensionen und Anschlusslösungen werden betont. Die Prinzipien der Modellbildung zum Nachweis der Tragsicherheit, Dauerhaftigkeit und Gebrauchstauglichkeit werden aufgezeigt. Die folgenden Themenschwerpunkte werden behandelt:

- Vertiefende Darstellung der relevanten Materialeigenschaften von Stahl
- Tragfähigkeit und Verformbarkeit von Querschnitten: plastische und elastische Grenzzustände
- Verbindungsmittel
Modulname:

Stahlbau

- Einfache Anschlüsse und Knoten: Modellbildung und Nachweisführung
- Stabilität von Bauteilen und Behandlung der Effekte 2. Ordnung bei der Systemberechnung
- Einführung in die Verbundbauweise

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagsexkursion) stattfinden.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 25 Minuten.</td>
</tr>
</tbody>
</table>

Als Prüfungsvorleistung sind Hausarbeiten im Stahlbau anzufertigen.

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul liefert wesentliche Grundlagen für den Holzbau.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.</td>
</tr>
</tbody>
</table>
Modulname: Stahlbau

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stahlbau</td>
<td>3745</td>
</tr>
</tbody>
</table>

Konto: Pflichtmodule VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr. techn. Andreas Taras

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>48</td>
<td>42</td>
<td>3</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37451</td>
<td>VL</td>
<td>Stahlbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37452</td>
<td>UE</td>
<td>Stahlbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 4

Empfohlene Voraussetzungen

Für eine erfolgreiche Teilnahme werden die Lehrinhalte des Moduls Grundlagen des Konstruktiven Ingenieurbau vorausgesetzt.

Qualifikationsziele

Inhalt

Es werden - aufbauend auf die Inhalte der Vorlesung Grundlagen des Konstruktiven Ingenieurbau - die Hintergründe und die praktische Anwendung der Nachweiskonzepte für Tragelemente aus Stahl dargestellt. Fertigungsbedingte Randbedingungen und materialbedingte Unterschiede bei der Wahl der Bauteildimensionen und Anschlusslösungen werden betont. Die Prinzipien der Modellbildung zum Nachweis der Tragsicherheit, Dauerhaftigkeit und Gebrauchstauglichkeit werden aufgezeigt. Die folgenden Themenschwerpunkte werden behandelt:

- Vertiefende Darstellung der relevanten Materialeigenschaften von Stahl
- Tragfähigkeit und Verformbarkeit von Querschnitten: plastische und elastische Grenzzustände
- Verbindungsmittel
- Einfache Anschlüsse und Knoten: Modellbildung und Nachweisführung
- Stabilität von Bauteilen und Behandlung der Effekte 2. Ordnung bei der Systemberechnung
- Einführung in die Verbundbauweise

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagsexkursion) stattfinden.

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 25 Minuten.

Als Prüfungsvorleistung sind Hausarbeiten im Stahlbau anzufertigen.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für den Holzbau.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Stahlbau

Modulnummer: 3745

Konto: Wahlpflichtmodule UI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr. techn. Andreas Taras

Modultyp: Pflicht

Empf. Trimester: 6

Workload in (h):
- Präsenzzeit in (h): 48
- Selbststudium in (h): 42
- ECTS-Punkte: 3

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>37451</td>
<td>VL</td>
<td>Stahlbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>37452</td>
<td>UE</td>
<td>Stahlbau</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 4

Empfohlene Voraussetzungen:

Für eine erfolgreiche Teilnahme werden die Lehrinhalte des Moduls Grundlagen des Konstruktiven Ingenieurbau vorausgesetzt.

Qualifikationsziele:

Inhalt:

Es werden - aufbauend auf die Inhalte der Vorlesung Grundlagen des Konstruktiven Ingenieurbau - die Hintergründe und die praktische Anwendung der Nachweiskonzepte für Tragelemente aus Stahl dargestellt. Fertigungsbedingte Randbedingungen und materialbedingte Unterschiede bei der Wahl der Bauteildimensionen und Anschlusslösungen werden betont. Die Prinzipien der Modellbildung zum Nachweis der Tragsicherheit, Dauerhaftigkeit und Gebrauchstauglichkeit werden aufgezeigt. Die folgenden Themenschwerpunkte werden behandelt:

- Vertiefende Darstellung der relevanten Materialeigenschaften von Stahl
- Tragfähigkeit und Verformbarkeit von Querschnitten: plastische und elastische Grenzzustände
- Verbindungsmittel
- Einfache Anschlüsse und Knoten: Modellbildung und Nachweisführung
- Stabilität von Bauteilen und Behandlung der Effekte 2. Ordnung bei der Systemberechnung
- Einführung in die Verbundbauweise

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Halbtagsexkursion) stattfinden.

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 25 Minuten.

Als Prüfungsvorleistung sind Hausarbeiten im Stahlbau anzufertigen.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für den Holzbau.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Statik I

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statik I</td>
<td>3618</td>
</tr>
</tbody>
</table>

Konto: Pflichtmodule Kl, Ul und VI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. habil. Norbert Gebbeken

<table>
<thead>
<tr>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29061</td>
<td>VL</td>
<td>Statik I</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>29062</td>
<td>UE</td>
<td>Statik I</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 6

Empfohlene Voraussetzungen

Grundlegendes Verständnis für die Baumechanik wie sie beispielsweise in den Modulen "Baumechanik I" und "Baumechanik II" vermittelt wird.

Qualifikationsziele

Inhalt

Grundlagen der Statik (Prof. Gebbeken):
- Tragwerksformen und Idealisierungen
- grundsätzliche Methoden der Statik
- Dualität von Kraft- und Verschiebungsgrößen

Stabtheorie und mechanisches Modell (Prof. Gebbeken):
- Spannungs-Schnittkraft-Beziehungen
- Werkstoffgesetz und Verzerrungs-Schnittkraft-Beziehungen
- Kinematik starrer Körper, Polpläne
- Prinzip der virtuellen Verrückungen
- Gleichgewichtsbeziehungen und Zustandslinien
- Einflußlinien
- Prinzip der virtuellen Kräfte
- Biegelinie: Differentialgleichung und Omega-Funktion

Berechnungsverfahren für statisch bestimmte, senkrecht zur Ebene belastete und gekrümmte Tragwerke sowie Seile (Prof. Gebbeken).
Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für das Modul 3619 "Statik II" und die konstruktiven Fächer Massivbau, Stahlbau und Holzbau.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 1. Studienjahr vorgesehen.
Modulname: Statik II
Modulnummer: 3619

Konto
Pflichtmodule KI, UI und VI - BAU 2019

Modulverantwortliche/r
Univ.-Prof. Dr.-Ing. habil. Norbert Gebbeken
Empf. Trimester: 4

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29071</td>
<td>VL</td>
<td>Statik II</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>29072</td>
<td>UE</td>
<td>Statik II</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Statik statisch bestimmter Systeme, z. B. aus dem Modul 3618 "Statik I" und Kenntnisse der Baumechanik.

Qualifikationsziele

Inhalt

Lösungsmöglichkeiten und Berechnungsverfahren für statisch unbestimmte Tragwerke (Schnittkräfte, Verschiebungsgrößen, Biegelinien, Einflußlinien, Steifigkeiten, Flexibilitäten), dabei:

- Kraftgrößenverfahren (KGV)
- Drehwinkelverfahren (DWV)
- Einführung in die Finite-Element-Methode (FEM)

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für das Modul 1403 "Vertiefte Kapitel der Statik und Numerik" und das Modul 2943 "Statik III und Materialtheorie" sowie die konstruktiven Fächer Massivbau, Stahlbau und Holzbau.
Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 2. Studienjahr vorgesehen.
Modulname

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statik III und Materialtheorie</td>
<td>2943</td>
</tr>
</tbody>
</table>

Konto

Wahlpflichtmodule UI - BAU 2019

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. habil. Michael Brünig</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h)

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>84</td>
<td>96</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14033</td>
<td>VL</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14034</td>
<td>UE</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>29081</td>
<td>VL</td>
<td>Materialmodellierung</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>29082</td>
<td>UE</td>
<td>Materialmodellierung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

7

Qualifikationsziele

Weiter beherrschen die Studierenden die Modellierung und Simulation von inelastischem Materialverhalten. Sie können geeignete mathematische Modelle zur Simulation enddimensionalern Experimente entwickeln und die zugehörigen Materialparameter identifizieren. Sie können unterschiedliche elastische und plastische Werkstoffmodelle und besitzen ein fundiertes Grundlagenwissen zur Ermittlung inelastischer Deformationen von Strukturen aus unterschiedlichen Materialien. Sie sind befähigt, Tragwerke über den elastischen Bereich hinaus zu analysieren und werden sensibilisiert, innovative Problemstellungen unter Ausnutzung der Tragreserven klassischer und neu zu entwickelnder Werkstoffe zu lösen.

Inhalt

Ebene Flächentragwerke (Prof. Gebbeken):

- Der zweiachsige Spannungszustand und die Gleichgewichtsbeziehungen am ebenen Flächentragwerk
- Aufspaltung in Scheiben und Platten
- Darstellung und Lösung der Scheiben- und Plattengleichung in kartesischen Koordinaten und Polarkoordinaten
• Grundlagen der Finite-Elemente-Methode für Flächentragwerke
• Anwendungen: Bemessung von Platten und Scheiben

Materialmodellierung (Prof. Brünig):

• Eindimensionale Versuche
• Mehraxialer Spannungszustand
• Elastisches Stoffgesetz
• Plastisches Stoffgesetz
• Elastisch-plastisches Stoffgesetz
• Anwendungen

Leistungsnachweis
Mündliche Prüfung 30 Min. oder schriftliche Prüfung 120 Min.

Dauer und Häufigkeit
Modulname: Statik III und Materialtheorie

| Modulnummer | Statik III und Materialtheorie | 2943 |

Konto | Wahlpflichtmodule VI - BAU 2019

Modulverantwortliche/r | Univ.-Prof. Dr.-Ing. habil. Michael Brünig
| Modultyp | Wahlpflicht |
| Empf. Trimester | 6 |

Workload in (h) | Präsenzzeit in (h) | Selbststudium in (h) | ECTS-Punkte |
| 180 | 84 | 96 | 6 |

Zugehörige Lehrveranstaltungen:

Nr.	Art	Veranstaltungsname	Teilnahme	TWS
14033	VL	Statik III - Ebene dünne Flächentragwerke	Pflicht	2
14034	UE	Statik III - Ebene dünne Flächentragwerke	Pflicht	2
29081	VL	Materialmodellierung	Pflicht	2
29082	UE	Materialmodellierung	Pflicht	1

Summe (Pflicht und Wahlpflicht) 7

Qualifikationsziele

Weiter beherrschen die Studierenden die Modellierung und Simulation von inelastischem Materialverhalten. Sie können geeignete mathematische Modelle zur Simulation enddimensionaler Experimente entwickeln und die zugehörigen Materialparameter identifizieren. Sie kennen unterschiedliche elastische und plastische Werkstoffmodelle und besitzen ein fundiertes Grundlagenwissen zur Ermittlung inelastischer Deformationen von Strukturen aus unterschiedlichen Materialien. Sie sind befähigt, Tragwerke über den elastischen Bereich hinaus zu analysieren und werden sensibilisiert, innovative Problemstellungen unter Ausnutzung der Tragreserven klassischer und neu zu entwickelnder Werkstoffe zu lösen.

Inhalt

Ebene Flächentragwerke (Prof. Gebbeken):

- Der zweiachsige Spannungszustand und die Gleichgewichtsbeziehungen am ebenen Flächentragwerk
- Aufspaltung in Scheiben und Platten
- Darstellung und Lösung der Scheiben- und Plattengleichung in kartesischen Koordinaten und Polarkoordinaten
- Grundlagen der Finite-Elemente-Methode für Flächentragwerke
- Anwendungen: Bemessung von Platten und Scheiben

Materialmodellierung (Prof. Brünig):

- Eindimensionale Versuche
- Mehraxialer Spannungszustand
- Elastisches Stoffgesetz
- Plastisches Stoffgesetz
- Elastisch-plastisches Stoffgesetz
- Anwendungen

Leistungsnachweis

Mündliche Prüfung 30 Min. oder schriftliche Prüfung 120 Min.

Dauer und Häufigkeit

Modulname

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienarbeit ME-BAU</td>
<td>3580</td>
</tr>
</tbody>
</table>

| Konto | Wahlpflichtmodule KI - BAU 2019 |

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Alexander Popp</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>270</td>
<td>54</td>
<td>216</td>
<td>9</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Alle Grundlagen- und Fachmodule, die für die Bearbeitung der jeweiligen Problemstellung erforderlich sind.

Qualifikationsziele

Der bzw. die Studierende ist in der Lage, eine eng abgegrenzte Problemstellung aus einem Bereich der angewandten Mathematik oder des Bauingenieurwesens und der Umweltwissenschaften unter Anleitung zu analysieren und zu bearbeiten. Er/sie kann den Sachverhalt klar darstellen und einen Lösungsweg aufzeigen. Darüber hinaus entwickelt der/die Studierende Verantwortungsbewusstsein für die eigene wissenschaftliche Arbeit.

Inhalt

Leistungsnachweis

Es werden sowohl die Vorgehensweise während der Bearbeitung wie auch die schriftliche Ausarbeitung oder anderweitige Dokumentation der Arbeitsergebnisse mit einem Notenschein bewertet. Wird die Studienarbeit als Gruppenarbeit angefertigt, so muss der individuelle Anteil der einzelnen Bearbeiter bzw. Bearbeiterinnen klar erkennbar sein.

Verwendbarkeit

Das Modul 3580 Studienarbeit ME-BAU ist erforderlich für den Abschluss des Bachelor-Studiums Mathematical Engineering (ME) mit der Wahlpflichtgruppe Modellierung und Simulation im Bauingenieurwesen (BAU).

Im Bachelor-Studium Bauingenieurwesen und Umweltwissenschaften (BAU) kann das Modul 3580 Studienarbeit ME-BAU nicht belegt werden (siehe Dauer und Häufigkeit).
Dauer und Häufigkeit

Das Modul stimmt in Teilen mit dem Modul 3027 "Interdisziplinäre Projekt KI" sowie mit dem Modul 3023 "Interdisziplinäres Projekt UI" überein, so dass es im Studium nicht zusammen mit diesen Modulen belegt werden kann.
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienarbeit ME-BAU</td>
<td>3580</td>
</tr>
</tbody>
</table>

Konto Wahlpflichtmodule UI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Alexander Popp</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>270</td>
<td>54</td>
<td>216</td>
<td>9</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Alle Grundlagen- und Fachmodule, die für die Bearbeitung der jeweiligen Problemstellung erforderlich sind.

Qualifikationsziele

Der bzw. die Studierende ist in der Lage, eine eng abgegrenzte Problemstellung aus einem Bereich der angewandten Mathematik oder des Bauingenieurwesens und der Umweltwissenschaften unter Anleitung zu analysieren und zu bearbeiten. Er/sie kann den Sachverhalt klar darstellen und einen Lösungsweg aufzeigen. Darüber hinaus entwickelt der/die Studierende Verantwortungsbewusstsein für die eigene wissenschaftliche Arbeit.

Inhalt

Leistungsnachweis

Es werden sowohl die Vorgehensweise während der Bearbeitung wie auch die schriftliche Ausarbeitung oder anderweitige Dokumentation der Arbeitsergebnisse mit einem Notenschein bewertet. Wird die Studienarbeit als Gruppenarbeit angefertigt, so muss der individuelle Anteil der einzelnen Bearbeiter bzw. Bearbeiterinnen klar erkennbar sein.

Verwendbarkeit

Das Modul 3580 Studienarbeit ME-BAU ist erforderlich für den Abschluss des Bachelor-Studiums Mathematical Engineering (ME) mit der Wahlpflichtgruppe Modellierung und Simulation im Bauingenieurwesen (BAU).

Im Bachelor-Studium Bauingenieurwesen und Umweltwissenschaften (BAU) kann das Modul 3580 Studienarbeit ME-BAU nicht belegt werden (siehe Dauer und Häufigkeit).
<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul stimmt in Teilen mit dem Modul 3027 "Interdisziplinäre Projekt KI" sowie mit dem Modul 3023 "Interdisziplinäres Projekt UI" überein, so dass es im Studium nicht zusammen mit diesen Modulen belegt werden kann.</td>
</tr>
</tbody>
</table>
Modulname: Studienarbeit ME-BAU

<table>
<thead>
<tr>
<th>Konto</th>
<th>Wahlpflichtmodule VI - BAU 2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Alexander Popp</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>270</td>
<td>54</td>
<td>216</td>
<td>9</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Alle Grundlagen- und Fachmodule, die für die Bearbeitung der jeweiligen Problemstellung erforderlich sind.

Qualifikationsziele

Der bzw. die Studierende ist in der Lage, eine eng abgegrenzte Problemstellung aus einem Bereich der angewandten Mathematik oder des Bauingenieurwesens und der Umweltwissenschaften unter Anleitung zu analysieren und zu bearbeiten. Er/sie kann den Sachverhalt klar darstellen und einen Lösungsweg aufzeigen. Darüber hinaus entwickelt der/die Studierende Verantwortungsbewusstsein für die eigene wissenschaftliche Arbeit.

Inhalt

Leistungsnachweis

Es werden sowohl die Vorgehensweise während der Bearbeitung wie auch die schriftliche Ausarbeitung oder anderweitige Dokumentation der Arbeitsergebnisse mit einem Notenschein bewertet. Wird die Studienarbeit als Gruppenarbeit angefertigt, so muss der individuelle Anteil der einzelnen Bearbeiter bzw. Bearbeiterinnen klar erkennbar sein.

Verwendbarkeit

Das Modul 3580 Studienarbeit ME-BAU ist erforderlich für den Abschluss des Bachelor-Studiums Mathematical Engineering (ME) mit der Wahlpflichtgruppe Modellierung und Simulation im Bauingenieurwesen (BAU).

Im Bachelor-Studium Bauingenieurwesen und Umweltwissenschaften (BAU) kann das Modul 3580 Studienarbeit ME-BAU nicht belegt werden (siehe Dauer und Häufigkeit).
<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Tragwerksschwingungen und Erschütterungsschutz

Modulverantwortliche/r
Univ.-Prof. Dr.-Ing. habil. Norbert Gebbeken

Modultyp
Wahlpflicht

Empfangen

45

ECTS-Punkte

3

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29091</td>
<td>P</td>
<td>Erschütterungsschutz</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>29092</td>
<td>VL</td>
<td>Tragwerksschwingungen</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

3

Empfohlene Voraussetzungen
Grundkenntnisse Baumechanik III

Qualifikationsziele

Inhalt
Tragwerksschwingungen und Erschütterungsschutz (Dr.-Ing. Gollwitzer):

- Schwingungs- und Erschütterungsprobleme in der Baupraxis
- Aufstellen und Lösen von Schwingungsgleichungen
- Schwingungsisolierung
- Amplitudenreduktion durch angekoppeltes Zusatzsystem
- Windinduzierte Schwingungen
- Ermüdungsberechnungen bei Brücken
- Erschütterungsausbreitung
• Auswirkungen auf Menschen und Gebäude
• Einsatz des Erschütterungsmesssystems
• Maßnahmen zur Erschütterungsreduktion

Praktikum Erschütterungsschutz (Dr.-Ing. Gollwitzer):

Im Rahmen des Praktikums wird das institutseigene Erschütterungsmesssystem an realen Bauwerken (z.B. Schwingungsmessungen an einer Brücke) eingesetzt. Die Messungen werden ausgewertet und die Ergebnisse für baupraktische Anwendungen diskutiert.

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 20 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

• Baudynamik und Erdbebeningenieurwesen
• Sicherheit der baulichen Infrastruktur
• konstruktive Fächer
• Eisenbahnbau
• Brückenbau

Dauer und Häufigkeit

Modulverantwortliche/r
Univ.-Prof. Dr.-Ing. habil. Norbert Gebbeken

Modultyp
Wahlpflicht

Empf. Trimester
0

Workload in (h)
- Präsenzzeit in (h): 36
- Selbststudium in (h): 54
- ECTS-Punkte: 3

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>29091</td>
<td>P</td>
<td>Erschütterungsschutz</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>29092</td>
<td>VL</td>
<td>Tragwerksschwingungen</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Inhalt
Tragwerksschwingungen und Erschütterungsschutz (Dr.-Ing. Gollwitzer):

- Schwingungs- und Erschütterungsprobleme in der Baupraxis
- Aufstellen und Lösen von Schwingungsgleichungen
- Schwingungsisolierung
- Amplitudenreduktion durch angekoppeltes Zusatzsystem
- Windinduzierte Schwingungen
- Ermüdungsberechnungen bei Brücken
- Erschütterungsausbreitung

Stand: 09. Juli 2019
<table>
<thead>
<tr>
<th>Modulname: Tragwerksschwingungen und Erschütterungsschutz</th>
</tr>
</thead>
</table>

- Auswirkungen auf Menschen und Gebäude
- Einsatz des Erschütterungsmesssystems
- Maßnahmen zur Erschütterungsreduktion

Praktikum Erschütterungsschutz (Dr.-Ing. Gollwitzer):

Im Rahmen des Praktikums wird das institutseigene Erschütterungsmesssystem an realen Bauwerken (z.B. Schwingungsmessungen an einer Brücke) eingesetzt. Die Messungen werden ausgewertet und die Ergebnisse für baupraktische Anwendungen diskutiert.

Leistungsnachweis

Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 20 Minuten.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Baudynamik und Erdbebeningenieurwesen
- Sicherheit der baulichen Infrastruktur
- konstruktive Fächer
- Eisenbahnbau
- Brückenbau

Dauer und Häufigkeit

Qualifikationsziele

Inhalt
Tragwerksschwingungen und Erschütterungsschutz (Dr.-Ing. Gollwitzer):

- Schwingungs- und Erschütterungsprobleme in der Baupraxis
- Aufstellen und Lösen von Schwingungsgleichungen
- Schwingungsisolierung
- Amplitudenreduktion durch angekoppeltes Zusatzsystem
- Windinduzierte Schwingungen
- Ermüdungsberechnungen bei Brücken
- Erschütterungsausbreitung
<table>
<thead>
<tr>
<th>Modulname: Tragwerksschwingungen und Erschütterungsschutz</th>
</tr>
</thead>
</table>

- Auswirkungen auf Menschen und Gebäude
- Einsatz des Erschütterungsmesssystems
- Maßnahmen zur Erschütterungsreduktion

Praktikum Erschütterungsschutz (Dr.-Ing. Gollwitzer):

Im Rahmen des Praktikums wird das institutseigene Erschütterungsmesssystem an realen Bauwerken (z.B. Schwingungsmessungen an einer Brücke) eingesetzt. Die Messungen werden ausgewertet und die Ergebnisse für baupraktische Anwendungen diskutiert.

<table>
<thead>
<tr>
<th>Leistungsnachweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung 60 Minuten oder mündliche Prüfung 20 Minuten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul liefert wesentliche Grundlagen für:</td>
</tr>
<tr>
<td>- Baudynamik und Erdbebeningenieurwesen</td>
</tr>
<tr>
<td>- Sicherheit der baulichen Infrastruktur</td>
</tr>
<tr>
<td>- konstruktive Fächer</td>
</tr>
<tr>
<td>- Eisenbahnbau</td>
</tr>
<tr>
<td>- Brückenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
</table>
Modulname: Umweltrecht, -planung und -prüfung
Modulnummer: 1406

Konto Pflichtmodule UI - BAU 2019

Modulverantwortliche/r: Univ.-Prof. Dr.-Ing. Christian Jacoby
Modultyp: Pflicht
Empf. Trimester: 6

Workload in (h)
<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>84</td>
<td>96</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14061</td>
<td>VL</td>
<td>Umweltrecht und Umweltprüfung</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14062</td>
<td>UE</td>
<td>Umweltrecht und Umweltprüfung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14063</td>
<td>VL</td>
<td>Lärmschutz, Naturschutz und Umweltplanung</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td>14064</td>
<td>UE</td>
<td>Lärmschutz, Naturschutz und Umweltplanung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 7

Qualifikationsziele

Inhalt

Umweltrecht und Umweltprüfung (Prof. Jacoby/Prof. Bardenhagen)

Umweltrecht

- Umweltverfassungsrecht
- Allgemeines Umweltverwaltungsrecht
- Umweltstrafrecht
- Umweltprivatrecht

Umweltprüfung

- Umweltverträglichkeitsprüfung (UVP) für Projekte
• Strategische Umweltprüfung (SUP) für Programme und Pläne
• Verträglichkeitsprüfung nach Flora-Fauna-Habitat-Richtlinie
• Umweltprüfungen in der Verkehrsplanung
• Umweltprüfungen in der Regionalplanung
• Umweltprüfungen in der Bauleitplanung
• Umweltprüfungen in der wasserwirtschaftlichen Planung

Lärmschutz, Naturschutz und Umweltplanung (Prof. Hoffmann/Prof. Jacoby)

Lärmschutz an Straßen

• Grundlagen zur Schallmessung und -beurteilung
• Berechnung von Emissionspegeln
• Berechnung von Beurteilungspegeln
• Grenz- und Richtwerte
• Lärmschutzmaßnahmen

Naturschutz

• Ziele und Grundsätze des Naturschutzes
• Spezieller Arten- und Biotopschutz
• Geschützte Gebiete
• Naturschutzrechtliche Eingriffsregelung
• Naturschutzmanagement und Kulturlandschaftsentwicklung

Umweltplanung

• Landschaftsplanung
• Luftreinhalteplanung und Lärmaktionsplanung
• Planungen zur Land- und Forstwirtschaft
• Hochwasserschutzplanung
• Planungen zur Energieversorgung und zum Klimaschutz

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Qualifikationsziele

Inhalt
Umweltrecht und Umweltprüfung (Prof. Jacoby/Prof. Bardenhagen)

Umweltrecht

- Umweltverfassungsrecht
- Allgemeines Umweltverwaltungsrecht
- Umweltstrafrecht
- Umweltprivatrecht

Umweltprüfung

- Umweltverträglichkeitsprüfung (UVP) für Projekte
<table>
<thead>
<tr>
<th>Modulname: Umweltrecht, -planung und -prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Strategische Umweltprüfung (SUP) für Programme und Pläne</td>
</tr>
<tr>
<td>• Verträglichkeitsprüfung nach Flora-Fauna-Habitat-Richtlinie</td>
</tr>
<tr>
<td>• Umweltprüfungen in der Verkehrsplanung</td>
</tr>
<tr>
<td>• Umweltprüfungen in der Regionalplanung</td>
</tr>
<tr>
<td>• Umweltprüfungen in der Bauleitplanung</td>
</tr>
<tr>
<td>• Umweltprüfungen in der wasserwirtschaftlichen Planung</td>
</tr>
</tbody>
</table>

Lärmschutz, Naturschutz und Umweltplanung (Prof. Hoffmann/Prof. Jacoby)

Lärmschutz an Straßen

- Grundlagen zur Schallmessung und -beurteilung
- Berechnung von Emissionspegeln
- Berechnung von Beurteilungspegeln
- Grenz- und Richtwerte
- Lärmschutzmaßnahmen

Naturschutz

- Ziele und Grundsätze des Naturschutzes
- Spezieller Arten- und Biotopschutz
- Geschützte Gebiete
- Naturschutzrechtliche Eingriffsregelung
- Naturschutzmanagement und Kulturlandschaftsentwicklung

Umweltplanung

- Landschaftsplanung
- Luftreinhalteplanung und Lärmaßnahmen
- Planungen zur Land- und Forstwirtschaft
- Hochwasserschutzplanung
- Planungen zur Energieversorgung und zum Klimaschutz

Leistungsnachweis

<table>
<thead>
<tr>
<th>Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.</th>
</tr>
</thead>
</table>

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Umweltrecht, -planung und -prüfung

Konto: Wahlpflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Christian Jacoby</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>84</td>
<td>96</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14061</td>
<td>VL</td>
<td>Umweltrecht und Umweltprüfung</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14062</td>
<td>UE</td>
<td>Umweltrecht und Umweltprüfung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14063</td>
<td>VL</td>
<td>Lärmschutz, Naturschutz und Umweltplanung</td>
<td>Pflicht</td>
<td>3</td>
</tr>
<tr>
<td>14064</td>
<td>UE</td>
<td>Lärmschutz, Naturschutz und Umweltplanung</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 7

Qualifikationsziele

Inhalt

Umweltrecht und Umweltprüfung (Prof. Jacoby/Prof. Bardenhagen)

Umweltrecht

- Umweltverfassungsrecht
- Allgemeines Umweltverwaltungsrecht
- Umweltstrafrecht
- Umweltprivatrecht

Umweltprüfung

- Umweltverträglichkeitsprüfung (UVP) für Projekte
• Strategische Umweltprüfung (SUP) für Programme und Pläne
• Verträglichkeitsprüfung nach Flora-Fauna-Habitat-Richtlinie
• Umweltprüfungen in der Verkehrsplanung
• Umweltprüfungen in der Regionalplanung
• Umweltprüfungen in der Bauleitplanung
• Umweltprüfungen in der wasserwirtschaftlichen Planung

Lärmschutz, Naturschutz und Umweltplanung (Prof. Hoffmann/Prof. Jacoby)

Lärmschutz an Straßen

• Grundlagen zur Schallmessung und -beurteilung
• Berechnung von Emissionspegeln
• Berechnung von Beurteilungspegeln
• Grenz- und Richtwerte
• Lärmschutzmaßnahmen

Naturschutz

• Ziele und Grundsätze des Naturschutzes
• Spezieller Arten- und Biotopschutz
• Geschützte Gebiete
• Naturschutzrechtliche Eingriffsregelung
• Naturschutzmanagemet und Kulturlandschaftsentwicklung

Umweltplanung

• Landschaftsplanung
• Luftreinhalteplanung und Lärmaktionsplanung
• Planungen zur Land- und Forstwirtschaft
• Hochwasserschutzplanung
• Planungen zur Energieversorgung und zum Klimaschutz

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Verkehrsströme

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrsströme</td>
<td>2941</td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Klaus Bogenberger</td>
<td>Wahlpflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>60</td>
<td>90</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14055</td>
<td>VL</td>
<td>Verkehrstechnik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14056</td>
<td>UE</td>
<td>Verkehrstechnik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14057</td>
<td>VL</td>
<td>Verkehrssimulation und -leitsysteme</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 5

Qualifikationsziele

Inhalt

Verkehrstechnik

- Verkehrstheorie (lokale und momentane Messungen, Verkehrsdichte, Verkehrsstärken ...)
- und Verkehrsstatistik (Ankunftsverteilung, Zeitlückenverteilung)
- Fundamentaldiagramm, Verkehrsablauf (Zeit-Weg-Diagramm)
- Straßenverkehrstechnik, Bemessung von Verkehrsanlagen (Knoten ohne LSA, Kreisverkehr, freie Strecke, Einfahrt)
- Grundlagen der LSA-Steuerung, Grüne Welle
- Vertiefung der Verkehrsstatistik (z.B. ARIMA-Modelle)
- Zeit-Weg-Diagramme, Contourplots, verkehrsadaptive Interpolation
- Stochastische Kapazität, Kumulative Analysen
- Warteprozesse, deterministische und stochastische Wartemodelle
- Verkehrsabläufe (Fundamentaldiagramm, Drei- bzw. Fünfphasen-Theorie des Verkehrsablaufs), Stoßwellentheorie, Kinematische Wellen (Lighthill/Witham)
- Verkehrszustandsschätzung (Netze und Knotenpunkte), Verkehrsprognosemodelle
- Verkehrssicherheit
- Lichtsignalsteuerung, Bemessung einer verkehrsabhängigen LSA

Verkehrssimulation
<table>
<thead>
<tr>
<th>Modulname: Verkehrsströme</th>
</tr>
</thead>
</table>

- Simulation der Verkehrserzeugung
- Simulation der Verkehrsverteilung
- Simulation der Verkehrsmittelwahl
- Verkehrsumlegung
- VISUM
- (sub-)mikroskopische Verkehrssimulation (VISSIM, AIMSUN)
- Fahrzeugfolgemodelle, Spurwechselmodelle
- mesoskopische Verkehrsflusssimulation
- makroskopische Verkehrsflusssimulation, zellulare Automaten

Leistungsnachweis

Schriftliche Prüfung 120 Min. oder mündliche Prüfung 30 Min.

Dauer und Häufigkeit

Modulname: Verkehrstechnik, -simulation und -leitsysteme

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrstechnik, -simulation und -leitsysteme</td>
<td>1405</td>
</tr>
</tbody>
</table>

Konto Pflichtmodule UI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Klaus Bogenberger</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>96</td>
<td>84</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14055</td>
<td>VL</td>
<td>Verkehrstechnik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14056</td>
<td>UE</td>
<td>Verkehrstechnik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14057</td>
<td>VL</td>
<td>Verkehrssimulation und -leitsysteme</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14058</td>
<td>P</td>
<td>Verkehrssimulation und -leitsysteme</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 8

Qualifikationsziele

Inhalt

Verkehrstechnik (Prof. Bogenberger) - FT

- Verkehrstheorie (lokale und momentane Messungen, Verkehrslichte, Verkehrsstärke ...)
- Verkehrsstatistik (Ankunftsverteilung, Zeitlückenverteilung)
- Fundamentaldiagramm, Verkehrsablauf (Zeit-Weg-Diagramm)
- Straßenverkehrstechnik, Bemessung von Verkehrsanlagen (Knoten ohne LSA, Kreisverkehr, freie Strecke, Einfahrt)
- Grundlagen der LSA-Steuerung, Grüne Welle
- Vertiefung der Verkehrsstatistik (z.B. ARIMA-Modelle)
- Zeit-Weg-Diagramme, Contourplots, verkehrsadaptive Interpolation
- Stochastische Kapazität, kumulative Analysen
- Warteprozesse, deterministische und stochastische Wartemodelle
- Verkehrsabläufe (Fundamentaldiagramm, Drei- bzw. Fünfphasen-Theorie des Verkehrsablaufs), Stoßwellentheorie, kinematische Wellen (Lighthill/Witham)
- Verkehrs- und Knotenpunkte, Verkehrsprognosemodelle

Stand: 09. Juli 2019
Universität der Bundeswehr München Seite 201 von 230
Verkehrssimulation und -leitsysteme (Prof. Bogenberger) - FT

- Einführung in die Regelungstechnik, Steuerungsverfahren
- Verkehrssteuerung innerorts (Festzeitsteuerung, verkehrsabhängige und adaptive Lichtsignalsteuerung, Parkleitsysteme)
- Grüne Welle
- Kollektive und individuelle Verkehrsleitsysteme außerorts (Streckenbeeinflussung, Netzbeeinflussung, Zuflussregelung, Integrierte Systeme)
- Pre-, On-, Post-Trip-Informationssysteme
- Navigationssysteme, Lichtsignalsteuerung, Bemessung einer verkehrsabhängigen LSA
- Parkleitsysteme
- Mautsysteme
- Anlagentechnik (Datenerfassung (Sensorik), Kommunikation, Aktorik, Zentrale Einrichtungen (Verkehrsrechnerzentrale))
- Verkehrssimulation (Bogenberger)
- Simulation der Verkehrserzeugung
- Simulation der Verkehrsverteilung
- Simulation der Verkehrsmittelwahl
- Verkehrsumlegung
- VISUM
- (sub-)mikroskopische Verkehrssimulation (VISSIM, AIMSUN)
- Fahrzeugfolgemodelle, Spurwechselmodelle
- mesoskopische Verkehrsflusssimulation
- makroskopische Verkehrsflusssimulation

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Das Modul dauert dauer 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Verkehrstechnik, -simulation und -leitsysteme

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verkehrstechnik, -simulation und -leitsysteme</td>
<td>1405</td>
</tr>
</tbody>
</table>

Konto: Pflichtmodule VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Klaus Bogenberger</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>96</td>
<td>84</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14055</td>
<td>VL</td>
<td>Verkehrstechnik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14056</td>
<td>UE</td>
<td>Verkehrstechnik</td>
<td>Pflicht</td>
<td>1</td>
</tr>
<tr>
<td>14057</td>
<td>VL</td>
<td>Verkehrssimulation und -leitsysteme</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14058</td>
<td>P</td>
<td>Verkehrssimulation und -leitsysteme</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht):

8

Qualifikationsziele

Inhalt

Verkehrstechnik (Prof. Bogenberger) - FT

- Verkehrstheorie (lokale und momentane Messungen, Verkehrsdichte, Verkehrsstärke ...)
- Verkehrsstatistik (Ankunftsverteilung, Zeitlückenverteilung)
- Fundamentaldiagramm, Verkehrsablauf (Zeit-Weg-Diagramm)
- Straßenverkehrstechnik, Bemessung von Verkehrsanlagen (Knoten ohne LSA, Kreisverkehr, freie Strecke, Einfahrt)
- Grundlagen der LSA-Steuerung, Grüne Welle
- Vertiefung der Verkehrsstatistik (z.B. ARIMA-Modelle)
- Zeit-Weg-Diagramme, Contourplots, verkehrsadaptive Interpolation
- Stochastische Kapazität, kumulative Analysen
- Warteprozesse, deterministische und stochastische Wartemodelle
- Verkehrsabläufe (Fundamentaldiagramm, Drei- bzw. Fünfphasen-Theorie des Verkehrsablaufs), Stoßwellenthorie, kinematische Wellen (Lighthill/Witham)
- Verkehrszustandsschätzung (Netze und Knotenpunkte), Verkehrsprognosemodelle
Verkehrssimulation und -leitsysteme (Prof. Bogenberger) - FT

- Einführung in die Regelungstechnik, Steuerungsverfahren
- Verkehrssteuerung innerorts (Festzeitsteuerung, verkehrsabhängige und adaptive Lichtsignalsteuerung, Parkleitsysteme)
- Grüne Welle
- Kollektive und individuelle Verkehrsleitsysteme außerorts (Streckenbeeinflussung, Netzbeeinflussung, Zuflussregelung, Integrierte Systeme)
- Pre-, On-, Post-Trip-Informationssysteme
- Navigationssysteme, Lichtsignalsteuerung, Bemessung einer verkehrsabhängigen LSA
- Parkleitsysteme
- Mautsysteme
- Anlagentechnik (Datenerfassung (Sensorik), Kommunikation, Aktorik, Zentrale Einrichtungen (Verkehrsrechnerzentrale))
- Verkehrssimulation (Bogenberger)
- Simulation der Verkehrserzeugung
- Simulation der Verkehrsverteilung
- Simulation der Verkehrsmittelwahl
- Verkehrsverlegung
- VISUM
 - (sub-)mikroskopische Verkehrssimulation (VISSIM, AIMSUN)
 - Fahrzeugfolgmodelle, Spurwechselmodelle
 - mesoskopische Verkehrsflusssimulation
 - makroskopische Verkehrsflusssimulation

Leistungsnachweis
Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit
Das Modul dauert dauer 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Qualifikationsziele

Inhalt
Verkehrstechnik (Prof. Bogenberger) - FT

- Verkehrstheorie (lokale und momentane Messungen, Verkehrsdichte, Verkehrsstärke ...)
- Verkehrsstatistik (Ankunftsverteilung, Zeitlückenverteilung)
- Fundamentaldiagramm, Verkehrsablauf (Zeit-Weg-Diagramm)
- Straßenverkehrstechnik, Bemessung von Verkehrsanlagen (Knoten ohne LSA, Kreisverkehr, freie Strecke, Einfahrt)
- Grundlagen der LSA-Steuerung, Grüne Welle
- Vertiefung der Verkehrsstatistik (z.B. ARIMA-Modelle)
- Zeit-Weg-Diagramme, Contourplots, verkehrsadaptive Interpolation
- Stochastische Kapazität, kumulative Analysen
- Warteprozesse, deterministische und stochastische Wartemodelle
- Verkehrsabläufe (Fundamentaldiagramm, Drei- bzw. Fünfphasen-Theorie des Verkehrsablaufes), Stoßwellentheorie, kinematische Wellen (Lighthill/Witham)
- Verkehrszustandsschätzung (Netze und Knotenpunkte), Verkehrsprognosemodelle
Verkehrssimulation und -leitsysteme (Prof. Bogenberger) - FT

- Einführung in die Regelungstechnik, Steuerungsverfahren
- Verkehrssteuerung innerorts (Festzeitsteuerung, verkehrsabhängige und adaptive Lichtsignalsteuerung, Parkleitsysteme)
- Grüne Welle
- Kollektive und individuelle Verkehrsleitsysteme außerorts (Streckenbeeinflussung, Netzbeeinflussung, Zuflussregelung, Integrierte Systeme)
- Pre-, On-, Post-Trip-Informationssysteme
- Navigationssysteme, Lichtsignalsteuerung, Bemessung einer verkehrsabhängigen LSA
- Parkleitsysteme
- Mautsysteme
- Anlagentechnik (Datenerfassung (Sensorik), Kommunikation, Aktorik, Zentrale Einrichtungen (Verkehrsrechnerzentrale))
- Verkehrssimulation (Bogenberger)
- Simulation der Verkehrserzeugung
- Simulation der Verkehrsverteilung
- Simulation der Verkehrsmittelwahl
- Verkehrsumlegung
- VISUM
 - (sub-)mikroskopische Verkehrssimulation (VISSIM, AIMSUN)
 - Fahrzeugfolgmodelle, Spurwechselmodelle
 - mesoskopische Verkehrsflusssimulation
 - makroskopische Verkehrsflusssimulation

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Dauer und Häufigkeit

Das Modul dauert dauer 1 Trimester und beginnt jedes Studienjahr jeweils im Frühjahrstrimester. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Vertiefte Kapitel der Statik und Numerik

Konto | Pflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. habil. Norbert Gebbeken</td>
<td>Pflicht</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>96</td>
<td>84</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14031</td>
<td>VL</td>
<td>Vertiefte Kapitel der Numerik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14032</td>
<td>UE</td>
<td>Vertiefte Kapitel der Numerik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14033</td>
<td>VL</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14034</td>
<td>UE</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) | 8 |

Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden kennen den Spannungszustand und die Gleichgewichtsbeziehungen für ebene dünne Flächentragwerke. Sie können praktische Anwendungsbeispiele von Hand berechnen und so das in "Statik I" und "Statik II" entwickelte "Ingenieurgefühl" für

Inhalt

Vertiefte Kapitel der Numerik (Prof. Popp):

- FEM-Diskretisierung in der linearen Elastodynamik
- Modalanalyse für Mehrfreiheitsgradsysteme
- Finite-Differenzen-Methoden als Zeitintegrationsverfahren
- Einführung in Fehlerschätzer
- Adaptive Finite-Elemente-Formulierungen
- Lösungsstrategien für große lineare Gleichungssysteme
- Direkte Methoden (Gauss-Eliminationsverfahren)
- Lineare iterative Methoden (Jacobi, Gauss-Seidel)
- Gradientenverfahren (CG-Verfahren, Vorkonditionierung)

Ebene Flächentragwerke (Prof. Gebbeken):

- Der zweiachsige Spannungszustand und die Gleichgewichtsbeziehungen am ebenen Flächentragwerk
- Aufspaltung in Scheiben und Platten
- Darstellung und Lösung der Scheiben- und Plattengleichung in kartesischen Koordinaten und Polarkoordinaten
- Grundlagen der Finite-Elemente-Methode für Flächentragwerke
- Anwendungen: Bemessung von Platten und Scheiben

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

- für fast alle weiterführenden Lehrveranstaltungen, insbesondere Statik, Hydromechanik und konstruktive Fächer
- Grundlage für Projekt- und Bachelorarbeit sowie vertiefende Lehrveranstaltungen in der computergestützten Simulation im Bauingenieurwesen
- "Numerische Methoden für ebene Flächentragwerke"
- die konstruktiven Fächer Massivbau, Stahlbau und Holzbau

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und findet jeweils im Frühjahrstrimester statt. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertiefte Kapitel der Statik und Numerik</td>
<td>1403</td>
</tr>
</tbody>
</table>

Konto

Wahlpflichtmodule UI - BAU 2019

Modulverantwortliche/r

| Univ.-Prof. Dr.-Ing. habil. Norbert Gebbeken | Pflicht | 6 |

Modultyp

<table>
<thead>
<tr>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Workload in (h)

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>96</td>
<td>84</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14031</td>
<td>VL</td>
<td>Vertiefte Kapitel der Numerik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14032</td>
<td>UE</td>
<td>Vertiefte Kapitel der Numerik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14033</td>
<td>VL</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14034</td>
<td>UE</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

8

Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden kennen den Spannungszustand und die Gleichgewichtsbeziehungen für ebene dünne Flächentragwerke. Sie können praktische Anwendungsbeispiele von Hand berechnen und so das in "Statik I" und "Statik II" entwickelte "Ingenieurgefühl" für...

Inhalt

Vertiefte Kapitel der Numerik (Prof. Popp):

- FEM-Diskretisierung in der linearen Elastodynamik
- Modalanalyse für Mehrfreiheitsgradsysteme
- Finite-Differenzen-Methoden als Zeitintegrationsverfahren
- Einführung in Fehlerschätzer
- Adaptive Finite-Elemente-Formulierungen
- Lösungsstrategien für große lineare Gleichungssysteme
- Direkte Methoden (Gauss-Eliminationsverfahren)
- Lineare iterative Methoden (Jacobi, Gauss-Seidel)
- Gradientenverfahren (CG-Verfahren, Vorkonditionierung)

Ebene Flächentragwerke (Prof. Gebbeken):

- Der zweiachsige Spannungszustand und die Gleichgewichtsbeziehungen am ebenen Flächentragwerk
- Aufspaltung in Scheiben und Platten
- Darstellung und Lösung der Scheiben- und Plattengleichung in kartesischen Koordinaten und Polarkoordinaten
- Grundlagen der Finite-Elemente-Methode für Flächentragwerke
- Anwendungen: Bemessung von Platten und Scheiben

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

- für fast alle weiterführenden Lehrveranstaltungen, insbesondere Statik, Hydromechanik und konstruktive Fächer
- Grundlage für Projekt- und Bachelorarbeit sowie vertiefende Lehrveranstaltungen in der computergestützten Simulation im Bauingenieurwesen
- "Numerische Methoden für ebene Flächentragwerke"
- die konstruktiven Fächer Massivbau, Stahlbau und Holzbau

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und findet jeweils im Frühjahrstrimester statt. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Vertiefte Kapitel der Statik und Numerik

<table>
<thead>
<tr>
<th>Konto</th>
<th>Wahlpflichtmodule VI - BAU 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche/r:</td>
<td>Modultyp</td>
</tr>
<tr>
<td>Univ.-Prof. Dr.-Ing. habil. Norbert Gebbeken</td>
<td>Pflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>96</td>
<td>84</td>
<td>6</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>14031</td>
<td>VL</td>
<td>Vertiefte Kapitel der Numerik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14032</td>
<td>UE</td>
<td>Vertiefte Kapitel der Numerik</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14033</td>
<td>VL</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>14034</td>
<td>UE</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht) 8

Empfohlene Voraussetzungen

Qualifikationsziele

Die Studierenden kennen den Spannungszustand und die Gleichgewichtsbeziehungen für ebene dünne Flächentragwerke. Sie können praktische Anwendungsbeispiele von Hand berechnen und so das in "Statik I" und "Statik II" entwickelte "Ingenieurgefühl" für...

Inhalt

Vertiefte Kapitel der Numerik (Prof. Popp):

- FEM-Diskretisierung in der linearen Elastodynamik
- Modalanalyse für Mehrfreiheitsgradsysteme
- Finite-Differenzen-Methoden als Zeitintegrationsverfahren
- Einführung in Fehlerschätzer
- Adaptive Finite-Elemente-Formulierungen
- Lösungsstrategien für große lineare Gleichungssysteme
- Direkte Methoden (Gauss-Eliminationsverfahren)
- Lineare iterative Methoden (Jacobi, Gauss-Seidel)
- Gradientenverfahren (CG-Verfahren, Vorkonditionierung)

Ebene Flächentragwerke (Prof. Gebbeken):

- Der zweiachsige Spannungszustand und die Gleichgewichtsbeziehungen am ebener Flächentragwerk
- Aufspaltung in Scheiben und Platten
- Darstellung und Lösung der Scheiben- und Plattengleichung in kartesischen Koordinaten und Polarkoordinaten
- Grundlagen der Finite-Elemente-Methode für Flächentragwerke
- Anwendungen: Bemessung von Platten und Scheiben

Leistungsnachweis

Schriftliche Prüfung 120 Minuten oder mündliche Prüfung 30 Minuten.

Verwendbarkeit

- für fast alle weiterführenden Lehrveranstaltungen, insbesondere Statik, Hydromechanik und konstruktive Fächer
- Grundlage für Projekt- und Bachelorarbeit sowie vertiefende Lehrveranstaltungen in der computergestützten Simulation im Bauingenieurwesen
- "Numerische Methoden für ebene Flächentragwerke"
- die konstruktiven Fächer Massivbau, Stahlbau und Holzbau

Dauer und Häufigkeit

Das Modul dauert 1 Trimester und findet jeweils im Frühjahrstrimester statt. Als Startzeitpunkt ist das Frühjahrstrimester im 2. Studienjahr vorgesehen.
Modulname: Voruniversitäre Leistungen / Sprachausbildung für BAU
Modulnummer: 1001

Konto	Gesamtkonto - Bachelor BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentralinstitut Studium+</td>
<td>Pflicht</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>96</td>
<td>144</td>
<td>8</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Die Studierenden erwerben in diesem Modul erste Erfahrungen, die in einem möglichst nahen Berufsfeldbezug stehen. Je nach angestrebtem Berufsfeld differieren daher die Qualifikationsziele, die vor- und außeruniversitär erbracht wurden.

Zivile Studierende in den Studiengängen der UniBwM erlangen in diesem Modul einen ersten Einblick in ihr angestrebtes Berufsfeld und erwerben erste berufsrelevante Qualifikationen.

Inhalt

In diesem Modul werden Inhalte vermittelt, die in einem engen Berufsfeldbezug stehen. Je nach Gruppe der Studierenden und je nach Berufszieilen differieren daher die Inhalte des Moduls. Alle Leistungen müssen jedoch gemäß ABaMaPO § 15 Abs. 1 in Rahmen der Bachelor-Studiengänge anrechenbar sein.

Für studierende Offizieranwärter/innen und Offiziere sind Sprachkenntnisse in Englisch im Standardisierten Sprachleistungsprofil Stufe 3 nachzuweisen (SLP 3332).

Wird diese Stufe während der englischsprachigen Ausbildung an den Offizierschulen vor Studienbeginn nicht erreicht, besteht eine Verpflichtung zur Teilnahme an der sprachlichen Weiterbildung. Der Studentenjahrgang 2007 genießt Vertrauensschutz.

Leistungsnachweis

- Die Leistungen werden durch einen Teilnahmeschein nachgewiesen
- Das Modul ist unbenotet

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 213 von 230
<table>
<thead>
<tr>
<th>Modulname: Voruniversitäre Leistungen / Sprachausbildung für BAU</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SLP 3332 unbenotet</td>
</tr>
<tr>
<td>Verwendbarkeit</td>
</tr>
<tr>
<td>Das Modul ist für sämtliche Bachelorstudiengänge gleichermaßen geeignet.</td>
</tr>
<tr>
<td>Sonstige Bemerkungen</td>
</tr>
</tbody>
</table>
Modulname: Werkstoffe und Bauchemie

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstoffe und Bauchemie</td>
<td>3021</td>
</tr>
</tbody>
</table>

Konto: Pflichtmodule Kl, Ul und VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Karl-Christian Thienel</td>
<td>Pflicht</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30211</td>
<td>VL</td>
<td>Einführung in die Bauchemie, Stoffkennwerte und metallische Werkstoffe</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>30212</td>
<td>VL</td>
<td>Chemie und Eigenschaften organischer Baustoffe und von Glas</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>30213</td>
<td>P</td>
<td>Stoffkennwerte, metallische und organische Baustoffe sowie Gals</td>
<td>Pflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht): 6

Empfohlene Voraussetzungen

Keine formalen Voraussetzungen

Qualifikationsziele

Die Studierenden erhalten einen Überblick über die chemischen und physikalischen Grundlagen des Werkstoffverhaltens. Sie erwerben Kompetenzen, organische und metallische Baustoffe aufgrund ihrer maßgebenden Eigenschaften beurteilen zu können. Die Studierenden werden in die Lage versetzt, den geeigneten Werkstoff für die jeweilige Bauaufgabe, auch unter Berücksichtigung der Umgebungsbedingungen, festlegen zu können.

Inhalt

Einführung in die Bauchemie - Allgemeine Grundlagen - Stoffkennwerte (Prof. Thienel):

- Allgemein chemische Grundlagen; Bindungsarten und Wertigkeiten; Aggregatzustände; chemische Reaktionen; Chemie und Umwelt
- Bautechnische Regeln und Bestimmungen; Masse, Dichte, Porosität; Verhalten poröser Feststoffe gegenüber Feuchtigkeit; Bauphysikalische Eigenschaften; Formänderung; Festigkeit; Messtechnik; Materialprüfung
- Chemie metallischer Werkstoffe; Stahlherstellung; Eigenschaften metallischer Werkstoffe; Schweißen; Schrauben; Nichteisenmetalle; Metallkorrosion

Stand: 09. Juli 2019
Chemie und Eigenschaften organischer Baustoffe (Prof. Thienel):

- Chemie organischer Baustoffe; Aufbau der Kunststoffe, Eigenschaften und Prüfung; Halbzeuge und Fertigprodukte, am Bau erhärtende Kunststoffe
- Aufbau des Holzes, physikalische Eigenschaften; Holzwerkstoffe; Holzschädlinge; Holzschutz
- Chemie und Eigenschaften von Bitumen; bituminöse Werkstoffe

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum.

Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für:

- Grundbau
- Wasserbau
- Umwelttechnik
- Verkehrswesen und Straßenbau
- Hydrologie
- Massivbau
- Stahlbau
- Holzbau
- Hoch- und Ingenieurbau
- Baubetrieb
- Tragwerksplanung

Dauer und Häufigkeit

Das Modul dauert 2 Trimester und beginnt jedes Studienjahr jeweils im Herbsttrimester. Als Startzeitpunkt ist das Herbsttrimester im 1. Studienjahr vorgesehen.
<table>
<thead>
<tr>
<th>Modulname</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werkstoffe und Bauchemie II für ME</td>
<td>3452</td>
</tr>
</tbody>
</table>

Konto | Wahlpflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Karl-Christian Thienel</td>
<td>Wahlmodul</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30132</td>
<td>P</td>
<td>Chemie und Eigenschaften mineralischer Baustoffe</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>30133</td>
<td>VL</td>
<td>Chemie und Eigenschaften mineralischer Baustoffe</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Inhalte gemäß dem Modul 3021 "Werkstoffe und Bauchemie"

Qualifikationsziele

Die Studierenden erwerben Kompetenzen mineralische Baustoffe aufgrund ihrer maßgebenden Eigenschaften beurteilen zu können. Sie erhalten einen Überblick über die Eigenschaften bituminöser Baustoffe und sind in Grundzügen über das Baustoffrecycling informiert. Die Studierenden werden in die Lage versetzt, den geeigneten Werkstoff für die jeweilige Bauaufgabe, auch unter Berücksichtigung der Umgebungsbedingungen, festzulegen.

Inhalt

- Chemie mineralischer Baustoffe, mineralische Bindemittel; Künstliche Steine; Mörtel; Gesteinskörnung
- Begriffe und Einteilung; Expositionsklassen; Frischbeton - Zusammensetzung, Verarbeitung und Konsistenz, Eigenschaften und Prüfung; Betonzusatzmittel; junger Beton; Nachbehandlung; Einflüsse auf die Festigkeit; Verformungseigenschaften; Dauerhaftigkeit; Betonkorrosion; Leichtbeton; Siebanalyse; Prüfverfahren
- Recycling organischer, metallischer und mineralischer Baustoffe

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum.

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 217 von 230
Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für die Bereiche Massivbau, Stahlbau, Holzbau, Hoch- und Ingenieurbau, Baubetrieb, Tragwerksplanung, Umwelttechnik, Straßenbau, Glasbau und Bauphysik.

Dauer und Häufigkeit

Modulname

<table>
<thead>
<tr>
<th>Werkstoffe und Bauchemie II für ME</th>
<th>Modulnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3452</td>
</tr>
</tbody>
</table>

Konto

Wahlpflichtmodule UI - BAU 2019

Modulverantwortliche/r

Univ.-Prof. Dr.-Ing. Karl-Christian Thienel

Modultyp

Empf. Trimester

<table>
<thead>
<tr>
<th>Wahlmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Workload in (h)

<table>
<thead>
<tr>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30132</td>
<td>P</td>
<td>Chemie und Eigenschaften mineralischer Baustoffe</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>30133</td>
<td>VL</td>
<td>Chemie und Eigenschaften mineralischer Baustoffe</td>
<td>Pflicht</td>
<td>4</td>
</tr>
</tbody>
</table>

Summe (Pflicht und Wahlpflicht)

6

Empfohlene Voraussetzungen

Inhalte gemäß dem Modul 3021 "Werkstoffe und Bauchemie"

Qualifikationsziele

Die Studierenden erwerben Kompetenzen mineralische Baustoffe aufgrund ihrer maßgebenden Eigenschaften beurteilen zu können. Sie erhalten einen Überblick über die Eigenschaften bituminöser Baustoffe und sind in Grundzügen über das Baustoffrecycling informiert. Die Studierenden werden in die Lage versetzt, den geeigneten Werkstoff für die jeweilige Bauaufgabe, auch unter Berücksichtigung der Umgebungsbedingungen, festzulegen.

Inhalt

- Chemie mineralischer Baustoffe, mineralische Bindemittel; Künstliche Steine; Mörtel; Gesteinskörnung
- Begriffe und Einteilung; Expositionsklassen; Frischbeton - Zusammensetzung, Verarbeitung und Konsistenz, Eigenschaften und Prüfung; Betonzusatzmittel; junger Beton; Nachbehandlung; Einflüsse auf die Festigkeit; Verformungseigenschaften; Dauerhaftigkeit; Betonkorrosion; Leichtbeton; Siebanalyse; Prüfverfahren
- Recycling organischer, metallischer und mineralischer Baustoffe

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum.
<table>
<thead>
<tr>
<th>Verwendbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul liefert wesentliche Grundlagen für die Bereiche Massivbau, Stahlbau, Holzbau, Hoch- und Ingenieurbau, Baubetrieb, Tragwerksplanung, Umwelttechnik, Straßenbau, Glasbau und Bauphysik.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer und Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Werkstoffe und Bauchemie II für ME</td>
</tr>
</tbody>
</table>

Konto: Wahlpflichtmodule VI - BAU 2019

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modultyp</th>
<th>Empf. Trimester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Dr.-Ing. Karl-Christian Thienel</td>
<td>Wahlmodul</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in (h)</th>
<th>Präsenzzeit in (h)</th>
<th>Selbststudium in (h)</th>
<th>ECTS-Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>72</td>
<td>78</td>
<td>5</td>
</tr>
</tbody>
</table>

Zugehörige Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Art</th>
<th>Veranstaltungsname</th>
<th>Teilnahme</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30132</td>
<td>P</td>
<td>Chemie und Eigenschaften mineralischer Baustoffe</td>
<td>Pflicht</td>
<td>2</td>
</tr>
<tr>
<td>30133</td>
<td>VL</td>
<td>Chemie und Eigenschaften mineralischer Baustoffe</td>
<td>Pflicht</td>
<td>4</td>
</tr>
<tr>
<td>Summe (Pflicht und Wahlpflicht)</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen

Inhalte gemäß dem Modul 3021 "Werkstoffe und Bauchemie"

Qualifikationsziele

Die Studierenden erwerben Kompetenzen mineralische Baustoffe aufgrund ihrer maßgebenden Eigenschaften beurteilen zu können. Sie erhalten einen Überblick über die Eigenschaften bituminöser Baustoffe und sind in Grundzügen über das Baustoffrecycling informiert. Die Studierenden werden in die Lage versetzt, den geeigneten Werkstoff für die jeweilige Bauaufgabe, auch unter Berücksichtigung der Umgebungsbedingungen, festzulegen.

Inhalt

- Chemie mineralischer Baustoffe, mineralische Bindemittel; Künstliche Steine; Mörtel; Gesteinskörnung
- Begriffe und Einteilung; Expositionsklassen; Frischbeton - Zusammensetzung, Verarbeitung und Konsistenz, Eigenschaften und Prüfung; Betonzusatzmittel; junger Beton; Nachbehandlung; Einflüsse auf die Festigkeit; Verformationseigenschaften; Dauerhaftigkeit; Betonkorrosion; Leichtbeton; Siebanalyse; Prüfverfahren
- Recycling organischer, metallischer und mineralischer Baustoffe

Es soll - sofern die Möglichkeit gegeben ist - eine Fachexkursion (Tagesexkursion) stattfinden.

Leistungsnachweis

Schriftliche Prüfung 90 Minuten oder mündliche Prüfung 25 Minuten und ein unbenoteter Teilnahmeschein für das Praktikum.
Verwendbarkeit

Das Modul liefert wesentliche Grundlagen für die Bereiche Massivbau, Stahlbau, Holzbau, Hoch- und Ingenieurbau, Baubetrieb, Tragwerksplanung, Umwelttechnik, Straßenbau, Glasbau und Bauphysik.

Dauer und Häufigkeit

Übersicht des Studiengangs: Konten und Module

Legende:
- FT = Fachsemester des Moduls
- PrFT = frühestes Semester, in dem die Modulprüfung erstmals abgelegt werden kann
- Nr = Konto- bzw. Modulnummer
- Name = Konto- bzw. Modulname
- M-Verantw. = Modulverantwortliche/r
- ECTS = Anzahl der Credit-Points

<table>
<thead>
<tr>
<th>FT</th>
<th>PrFT</th>
<th>Nr</th>
<th>Name</th>
<th>M-Verantw.</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td>2900</td>
<td>Bachelorarbeit BAU</td>
<td>N. N.</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1001</td>
<td>Voruniversitäre Leistungen / Sprachausbildung für BAU</td>
<td>Zentralinstitut Studium+</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Fortschrittschema - BAU 2019</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Pflichtmodule KI, UI und VI - BAU 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2894</td>
<td>Baukonstruktion und Bauphysik</td>
<td>G. Siebert</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2902</td>
<td>Baumechanik I</td>
<td>M. Brünig</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2903</td>
<td>Baumechanik II</td>
<td>M. Brünig</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2904</td>
<td>Baumechanik III</td>
<td>M. Brünig</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3780</td>
<td>Einführung FEM</td>
<td>A. Popp</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1397</td>
<td>Einführung in das Wasserwesen</td>
<td>A. Malcherek</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2507</td>
<td>Entwerfen und Konstruieren</td>
<td>G. Siebert</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3013</td>
<td>Geologie, Werkstoffe und Bauchemie</td>
<td>K. Thienel</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3019</td>
<td>Grundlagen der Geodäsie</td>
<td>O. Heunecke</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1290</td>
<td>Grundlagen der Geotechnik</td>
<td>C. Boley</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2509</td>
<td>Grundlagen des Baubetriebs</td>
<td>J. Schwarz</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1396</td>
<td>Grundlagen des Konstruktiven Ingenieurbau</td>
<td>A. Taras</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3800</td>
<td>Grundlagen des Verkehrswesens und der Raumplanung I</td>
<td>K. Bogenberger</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3801</td>
<td>Grundlagen des Verkehrswesens und der Raumplanung II</td>
<td>C. Jacoby</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1291</td>
<td>Mathematik I</td>
<td>M. Gerdts</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1292</td>
<td>Mathematik II</td>
<td>S. Schäffler</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1293</td>
<td>Mathematik III</td>
<td>T. Apel</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3799</td>
<td>Programmieren und Statistik</td>
<td>A. Popp</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3618</td>
<td>Statik I</td>
<td>N. Gebbeken</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3619</td>
<td>Statik II</td>
<td>N. Gebbeken</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3021</td>
<td>Werkstoffe und Bauchemie</td>
<td>K. Thienel</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>Pflichtmodule KI - BAU 2019</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3746</td>
<td>Holzbau</td>
<td>A. Taras</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3027</td>
<td>Interdisziplinäres Projekt KI</td>
<td>G. Siebert</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1402</td>
<td>Massivbau</td>
<td>T. Braml</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3747</td>
<td>Multimodale Verkehrssysteme</td>
<td>S. Hoffmann</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3745</td>
<td>Stahlbau</td>
<td>A. Taras</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>1403</td>
<td>Vertiefte Kapitel der Statik und Numerik</td>
<td>N. Gebbeken</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>Pflichtmodule UI - BAU 2019</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3748</td>
<td>Grundlagen der Wasser- und Abfalltechnik</td>
<td>C. Schaum</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3749</td>
<td>Hydromechanik und Wasserbau</td>
<td>A. Malcherek</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 223 von 230
Pflichtmodule VI - BAU 2019

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 0</td>
<td>Interdisziplinäres Projekt UI</td>
<td>C. Jacoby</td>
</tr>
<tr>
<td>6 0</td>
<td>Umweltrecht, -planung und -prüfung</td>
<td>C. Jacoby</td>
</tr>
<tr>
<td>6 6</td>
<td>Verkehrstechnik, -simulation und -leitsysteme</td>
<td>K. Bogenberger</td>
</tr>
</tbody>
</table>

Wahlpflichtmodule KI - BAU 2019

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 0</td>
<td>Abwasser als Ressource</td>
<td>C. Schaum</td>
</tr>
<tr>
<td>6 0</td>
<td>Anwendungen der Geodäsie</td>
<td>O. Heunecke</td>
</tr>
<tr>
<td>6 6</td>
<td>Ausgewählte Kapitel der Verkehrsplanung</td>
<td>E. Kienlein</td>
</tr>
<tr>
<td>6 6</td>
<td>Ausgewählte Kapitel der Verkehrstechnik</td>
<td>K. Bogenberger</td>
</tr>
<tr>
<td>5 0</td>
<td>Grundlagen der Wasser- und Abfalltechnik</td>
<td>C. Schaum</td>
</tr>
<tr>
<td>6 6</td>
<td>Grundlagen des wissenschaftlichen Arbeiten in den Ingenieurwissenschaften</td>
<td>K. Thiemann</td>
</tr>
<tr>
<td>5 0</td>
<td>Hydromechanik für ME</td>
<td>A. Malcherek</td>
</tr>
<tr>
<td>5 6</td>
<td>Interdisziplinäres Projekt UI</td>
<td>C. Jacoby</td>
</tr>
<tr>
<td>6 0</td>
<td>Interdisziplinäres Projekt Verkehrsentwurf</td>
<td>A. Malcherek</td>
</tr>
<tr>
<td>6 6</td>
<td>Kampfmitteleinrichtung und militärische Altlasten</td>
<td>C. Boley</td>
</tr>
<tr>
<td>4 4</td>
<td>Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME</td>
<td>A. Taras</td>
</tr>
<tr>
<td>6 6</td>
<td>Materialmodellierung</td>
<td>M. Brünig</td>
</tr>
<tr>
<td>6 6</td>
<td>Modellierung von Unsicherheiten und Daten</td>
<td>A. Popp</td>
</tr>
<tr>
<td>6 0</td>
<td>Sonderkapiel des Bauingenieurwesens und der Umweltwissenschaften I</td>
<td>O. Heunecke</td>
</tr>
<tr>
<td>6 0</td>
<td>Sonderkapiel des Bauingenieurwesens und der Umweltwissenschaften II</td>
<td>O. Heunecke</td>
</tr>
<tr>
<td>6 0</td>
<td>Studienarbeit ME-BAU</td>
<td>A. Popp</td>
</tr>
<tr>
<td>6 0</td>
<td>Tragwerksschwingungen und Erschütterungsschutz</td>
<td>N. Gebbeken</td>
</tr>
<tr>
<td>6 0</td>
<td>Umweltrecht, -planung und -prüfung</td>
<td>C. Jacoby</td>
</tr>
<tr>
<td>6 6</td>
<td>Verkehrsströme</td>
<td>K. Bogenberger</td>
</tr>
<tr>
<td>6 6</td>
<td>Verkehrstechnik, -simulation und -leitsysteme</td>
<td>K. Bogenberger</td>
</tr>
<tr>
<td>3 3</td>
<td>Werkstoffe und Bauchemie II für ME</td>
<td>K. Thienel</td>
</tr>
</tbody>
</table>

Wahlpflichtmodule UI - BAU 2019

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 0</td>
<td>Abwasser als Ressource</td>
<td>C. Schaum</td>
</tr>
<tr>
<td>6 0</td>
<td>Anwendungen der Geodäsie</td>
<td>O. Heunecke</td>
</tr>
<tr>
<td>6 6</td>
<td>Ausgewählte Kapitel der Verkehrsplanung</td>
<td>E. Kienlein</td>
</tr>
<tr>
<td>6 6</td>
<td>Ausgewählte Kapitel der Verkehrstechnik</td>
<td>K. Bogenberger</td>
</tr>
<tr>
<td>6 6</td>
<td>Grundlagen des wissenschaftlichen Arbeiten in den Ingenieurwissenschaften</td>
<td>K. Thiemann</td>
</tr>
<tr>
<td>6 0</td>
<td>Holzbau</td>
<td>A. Taras</td>
</tr>
<tr>
<td>5 6</td>
<td>Interdisziplinäres Projekt KI</td>
<td>A. Malcherek</td>
</tr>
<tr>
<td>6 0</td>
<td>Interdisziplinäres Projekt Verkehrsentwurf</td>
<td>G. Siebert</td>
</tr>
<tr>
<td>6 6</td>
<td>Kampfmitteleinrichtung und militärische Altlasten</td>
<td>C. Boley</td>
</tr>
<tr>
<td>4 4</td>
<td>Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME</td>
<td>A. Taras</td>
</tr>
<tr>
<td>6 6</td>
<td>Massivbau</td>
<td>T. Braml</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Lecturer</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>6</td>
<td>Materialmodellierung</td>
<td>M. Brünig</td>
</tr>
<tr>
<td>6</td>
<td>Modellierung von Unsicherheiten und Daten</td>
<td>A. Popp</td>
</tr>
<tr>
<td>5</td>
<td>Multimodale Verkehrssysteme</td>
<td>S. Hoffmann</td>
</tr>
<tr>
<td>0</td>
<td>Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften I</td>
<td>O. Heunecke</td>
</tr>
<tr>
<td>0</td>
<td>Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften II</td>
<td>O. Heunecke</td>
</tr>
<tr>
<td>6</td>
<td>Stahlbau</td>
<td>A. Taras</td>
</tr>
<tr>
<td>6</td>
<td>Statik III und Materialtheorie</td>
<td>M. Brünig</td>
</tr>
<tr>
<td>6</td>
<td>Studienarbeit ME-BAU</td>
<td>A. Popp</td>
</tr>
<tr>
<td>0</td>
<td>Tragwerksschwingungen und Erschütterungsschutz</td>
<td>N. Gebbeken</td>
</tr>
<tr>
<td>6</td>
<td>Vertiefte Kapitel der Statik und Numerik</td>
<td>N. Gebbeken</td>
</tr>
<tr>
<td>3</td>
<td>Werkstoffe und Bauchemie II für ME</td>
<td>K. Thienel</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodule VI - BAU 2019</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Abwasser als Ressource</td>
<td>C. Schaum</td>
</tr>
<tr>
<td>6</td>
<td>Anwendungen der Geodäsie</td>
<td>O. Heunecke</td>
</tr>
<tr>
<td>6</td>
<td>Ausgewählte Kapitel der Verkehrsplanung</td>
<td>E. Kienlein</td>
</tr>
<tr>
<td>6</td>
<td>Ausgewählte Kapitel der Verkehrstechnik</td>
<td>K. Bogenberger</td>
</tr>
<tr>
<td>5</td>
<td>Grundlagen der Wasser- und Abfalltechnik</td>
<td>C. Schaum</td>
</tr>
<tr>
<td>6</td>
<td>Grundlagen des wissenschaftlichen Arbeitens in den Ingenieurwissenschaften</td>
<td>K. Thiemann</td>
</tr>
<tr>
<td>6</td>
<td>Holzbau</td>
<td>A. Taras</td>
</tr>
<tr>
<td>5</td>
<td>Hydromechanik für ME</td>
<td>A. Malcherek</td>
</tr>
<tr>
<td>5</td>
<td>Hydromechanik und Wasserbau</td>
<td>A. Malcherek</td>
</tr>
<tr>
<td>6</td>
<td>Interdisziplinäres Projekt KI</td>
<td>G. Siebert</td>
</tr>
<tr>
<td>6</td>
<td>Interdisziplinäres Projekt UI</td>
<td>C. Jacoby</td>
</tr>
<tr>
<td>6</td>
<td>Kampfmitteleinträumung und militärische Altlasten</td>
<td>C. Boëly</td>
</tr>
<tr>
<td>4</td>
<td>Konstruktiver Ingenieurbau I mit Darstellungstechnik und CAD für ME</td>
<td>A. Taras</td>
</tr>
<tr>
<td>6</td>
<td>Materialmodellierung</td>
<td>M. Brünig</td>
</tr>
<tr>
<td>6</td>
<td>Modellierung von Unsicherheiten und Daten</td>
<td>A. Popp</td>
</tr>
<tr>
<td>0</td>
<td>Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften I</td>
<td>O. Heunecke</td>
</tr>
<tr>
<td>0</td>
<td>Sonderkapitel des Bauingenieurwesens und der Umweltwissenschaften II</td>
<td>O. Heunecke</td>
</tr>
<tr>
<td>6</td>
<td>Statik III und Materialtheorie</td>
<td>M. Brünig</td>
</tr>
<tr>
<td>6</td>
<td>Studienarbeit ME-BAU</td>
<td>A. Popp</td>
</tr>
<tr>
<td>0</td>
<td>Tragwerksschwingungen und Erschütterungsschutz</td>
<td>N. Gebbeken</td>
</tr>
<tr>
<td>6</td>
<td>Vertiefte Kapitel der Statik und Numerik</td>
<td>N. Gebbeken</td>
</tr>
<tr>
<td>3</td>
<td>Werkstoffe und Bauchemie II für ME</td>
<td>K. Thienel</td>
</tr>
<tr>
<td></td>
<td>Studium+ Bachelor</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Seminar studium plus 1</td>
<td>Zentralinstitut Studium+</td>
</tr>
<tr>
<td>0</td>
<td>Seminar studium plus 2, Training</td>
<td>Zentralinstitut Studium+</td>
</tr>
</tbody>
</table>
Übersicht des Studiengangs: Lehrveranstaltungen

Legende:

- **FT** = Fachsemester der Veranstaltung
- **Nr** = Veranstaltungsnummer
- **Name** = Veranstaltungsname
- **Art** = Veranstaltungsart
- **P/Wp** = Pflicht / Wahlpflicht
- **TWS** = Trimesterwochenstunden

<table>
<thead>
<tr>
<th>FT</th>
<th>Nr</th>
<th>Name</th>
<th>Art</th>
<th>P/Wp</th>
<th>TWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13961</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>13962</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Übung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13971</td>
<td>Hydraulik</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13972</td>
<td>Grundlagen der Wasserversorgung</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13973</td>
<td>Grundlagen der Wasserversorgung</td>
<td>Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13974</td>
<td>Grundlagen der Abwasserbehandlung</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13975</td>
<td>Grundlagen der Abwasserbehandlung</td>
<td>Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13976</td>
<td>Wasserbau I</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13977</td>
<td>Laborpraktikum</td>
<td>Praktikum</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13981</td>
<td>Grundlagen des Verkehrswesens</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13982</td>
<td>Grundlagen des Verkehrswesens</td>
<td>Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13983</td>
<td>Grundlagen der Raumordnung und Bauleitplanung</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13984</td>
<td>Grundlagen der Raumordnung und Bauleitplanung</td>
<td>Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13991</td>
<td>Straßenentwurf I</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13992</td>
<td>Straßenbautechnik</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13993</td>
<td>Straßenentwurf und Straßenbautechnik</td>
<td>Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13994</td>
<td>Städtebauliche Planung</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13995</td>
<td>Grundlagen der Projektentwicklung</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13996</td>
<td>Städtebauliche Planung und Projektentwicklung</td>
<td>Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14001</td>
<td>Hydromechanik I</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14002</td>
<td>Hydromechanik I</td>
<td>Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14003</td>
<td>Hydromechanik II, Hydrologie und Wasserwirtschaft</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14004</td>
<td>Wasserbau II</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14031</td>
<td>Vertiefte Kapitel der Numerik</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14032</td>
<td>Vertiefte Kapitel der Numerik</td>
<td>Übung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14058</td>
<td>Verkehrssimulation und -leitsysteme</td>
<td>Praktikum</td>
<td>Pf</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14061</td>
<td>Umweltrecht und Umweltprüfung</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14062</td>
<td>Umweltrecht und Umweltprüfung</td>
<td>Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14063</td>
<td>Lärmschutz, Naturschutz und Umweltplanung</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>14064</td>
<td>Lärmschutz, Naturschutz und Umweltplanung</td>
<td>Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14081</td>
<td>Intelligente Fahrzeuge</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14082</td>
<td>Straßenentwurf II</td>
<td>Vorlesung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14083</td>
<td>Praktikum Straßenbau</td>
<td>Praktikum</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>14084</td>
<td>Praktikum Verkehrstechnik</td>
<td>Praktikum</td>
<td>Pf</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>25072</td>
<td>Darstellungstechnik</td>
<td>Vorlesung/Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25073</td>
<td>Konstruktives Zeichnen, CAD</td>
<td>Vorlesung/Übung</td>
<td>Pf</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Kursnummer</td>
<td>Kursname</td>
<td>Art</td>
<td>Pf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>-------------</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25074</td>
<td>Baukonstruktion I</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25091</td>
<td>Baubetrieb</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25092</td>
<td>Grundbegriffe Recht und Wirtschaft</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25093</td>
<td>Kalkulation und Arbeitssicherheit</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28941</td>
<td>Bauphysik I</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28942</td>
<td>Bauphysik I</td>
<td>Übung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28943</td>
<td>Baukonstruktion II</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28944</td>
<td>Baukonstruktion II</td>
<td>Übung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28945</td>
<td>Bauphysik II</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28946</td>
<td>Bauphysik II</td>
<td>Übung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28947</td>
<td>Baukonstruktion III</td>
<td>Vorlesung</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289481</td>
<td>Baukonstruktion III</td>
<td>Übung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29091</td>
<td>Erschütterungsschutz</td>
<td>Praktikum</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29092</td>
<td>Tragwerksschwingungen</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29101</td>
<td>Anwendungen der Geodäsie</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29102</td>
<td>Anwendungen der Geodäsie</td>
<td>Übung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30121</td>
<td>Einführung FEM</td>
<td>Vorlesung</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30122</td>
<td>Einführung FEM</td>
<td>Übung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30131</td>
<td>Grundlagen der Geologie</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30191</td>
<td>Grundlagen der Geodäsie</td>
<td>Vorlesung</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30192</td>
<td>Grundlagen der Geodäsie</td>
<td>Übung</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30212</td>
<td>Chemie und Eigenschaften organischer Baustoffe und von Glas</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30231</td>
<td>Interdisziplinäres Projekt Umwelt- und Infrastruktur</td>
<td>Vorlesung/Übung</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30271</td>
<td>Interdisziplinäres Projekt Konstruktiver Ingenieurbau</td>
<td>Vorlesung/Übung</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35811</td>
<td>Grundlagen des wissenschaftlichen Arbeitens</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35812</td>
<td>Studienarbeit</td>
<td>Studienprojekt</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36451</td>
<td>Umweltbelange in der Verkehrsplanung</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36641</td>
<td>Grundlagen Kampfmittel und geophysikalische Verfahren</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36642</td>
<td>Planung und Ausführung der Kampfmittelräumung</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36643</td>
<td>Militärische Altlasten</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37451</td>
<td>Stahlbau Vorlesung</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37452</td>
<td>Stahlbau Übung</td>
<td>Übung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37461</td>
<td>Holzbau Vorlesung</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37462</td>
<td>Holzbau Übung</td>
<td>Übung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37471</td>
<td>Multimodalität und Verkehrsmittelwahl</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37472</td>
<td>Multimodalität und Verkehrsmittelwahl</td>
<td>Übung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37473</td>
<td>Verkehrssysteme</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37474</td>
<td>Verkehrssysteme</td>
<td>Übung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37481</td>
<td>Grundlagen der Abfalltechnik</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37482</td>
<td>Grundlagen der Luftreinhaltung</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37483</td>
<td>Grundlagen der Wassertechnologien</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37501</td>
<td>Interdisziplinäres Projekt Verkehrsentwurf</td>
<td>Vorlesung/Übung</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37511</td>
<td>Wasser als Ressource</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37512</td>
<td>Klärschlamm als Ressource Veranstaltung</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37891</td>
<td>Modellierung von Unsicherheiten und Daten</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37892</td>
<td>Algorithmen zur Modellierung von Unsicherheiten und Daten</td>
<td>Praktikum</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Präfix</td>
<td>Code</td>
<td>Kurs</td>
<td>Veranstaltungsart</td>
<td>Pflichtenheft</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>---</td>
<td>-------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12891</td>
<td>Programmieren</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12892</td>
<td>Programmieren</td>
<td>Übung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12911</td>
<td>Mathematik I</td>
<td>Vorlesung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12912</td>
<td>Mathematik I (EIT)</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12913</td>
<td>Mathematik I (LRT)</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12914</td>
<td>Mathematik I (BAU)</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12921</td>
<td>Mathematik II</td>
<td>Vorlesung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12922</td>
<td>Mathematik II (EIT)</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12923</td>
<td>Mathematik II (LRT)</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12924</td>
<td>Mathematik II (BAU)</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12921</td>
<td>Konstruktive Geometrie</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25071</td>
<td>Baukonstruktion I</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>29021</td>
<td>Baumechanik I</td>
<td>Vorlesung</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>29022</td>
<td>Baumechanik I</td>
<td>Übung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12893</td>
<td>Statistik</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12894</td>
<td>Statistik</td>
<td>Übung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12931</td>
<td>Statistik</td>
<td>Vorlesung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12932</td>
<td>Statistik</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12933</td>
<td>Statistik</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12934</td>
<td>Statistik</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>29031</td>
<td>Baumechanik II</td>
<td>Vorlesung</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>29032</td>
<td>Baumechanik II</td>
<td>Übung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>29041</td>
<td>Baumechanik III</td>
<td>Vorlesung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>29042</td>
<td>Baumechanik III</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30132</td>
<td>Chemie und Eigenschaften mineralischer Baustoffe</td>
<td>Praktikum</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30133</td>
<td>Chemie und Eigenschaften mineralischer Baustoffe</td>
<td>Vorlesung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12901</td>
<td>Geotechnik I</td>
<td>Vorlesung/Übung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13961</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Vorlesung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>14001</td>
<td>Konstruktiver Ingenieurbau I</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>29071</td>
<td>Konstruktive Geometrie</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25072</td>
<td>Darstellungstechnik</td>
<td>Seminaristischer Unterricht</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25073</td>
<td>Konstruktives Zeichnen, CAD</td>
<td>Seminaristischer Unterricht</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>29071</td>
<td>Statik II</td>
<td>Vorlesung</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>29072</td>
<td>Statik II</td>
<td>Übung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13971</td>
<td>Hydraulik</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14001</td>
<td>Hydromechanik I</td>
<td>Vorlesung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14002</td>
<td>Hydromechanik I</td>
<td>Übung</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12902</td>
<td>Geotechnik-Praktikum</td>
<td>Praktikum</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12903</td>
<td>Geotechnik II</td>
<td>Vorlesung/Übung/Praktikum</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14003</td>
<td>Hydromechanik II, Hydrologie und Wasserbau</td>
<td>Vorlesung</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 09. Juli 2019
Universität der Bundeswehr München
Seite 228 von 230
<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>Veranstaltungstyp</th>
<th>Pflichtenheft</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>14021</td>
<td>Massivbau</td>
<td>Vorlesung</td>
<td>Pf 4</td>
</tr>
<tr>
<td>6</td>
<td>14022</td>
<td>Massivbau</td>
<td>Übung</td>
<td>Pf 2</td>
</tr>
<tr>
<td>6</td>
<td>14033</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Vorlesung</td>
<td>Pf 2</td>
</tr>
<tr>
<td>6</td>
<td>14034</td>
<td>Statik III - Ebene dünne Flächentragwerke</td>
<td>Übung</td>
<td>Pf 2</td>
</tr>
<tr>
<td>6</td>
<td>14055</td>
<td>Verkehrstechnik</td>
<td>Vorlesung</td>
<td>Pf 2</td>
</tr>
<tr>
<td>6</td>
<td>14056</td>
<td>Verkehrstechnik</td>
<td>Übung</td>
<td>Pf 1</td>
</tr>
<tr>
<td>6</td>
<td>14057</td>
<td>Verkehrssimulation und -leitsysteme</td>
<td>Vorlesung</td>
<td>Pf 2</td>
</tr>
<tr>
<td>6</td>
<td>29081</td>
<td>Materialmodellierung</td>
<td>Vorlesung</td>
<td>Pf 2</td>
</tr>
<tr>
<td>6</td>
<td>29082</td>
<td>Materialmodellierung</td>
<td>Übung</td>
<td>Pf 1</td>
</tr>
</tbody>
</table>