Direkt zum Inhalt | Direkt zur Navigation

UniBwM » LRT » LRT 1 » Prof. Gerdts » Staff » Sven-Joachim Kimmerle

Sven-Joachim Kimmerle

Homepage von Sven-Joachim Kimmerle, Vertretungsprofessor am Institut für Mathematik und Bauinformatik, Uni Bw München

kimmerle.jpg
Unfortunately, I don't have
a fuel cell car, yet ...

Dr. rer. nat. Sven-Joachim Kimmerle

Substitute Professor
("Vertretungsprofessor")
at institute BAU-1

Building: 41/100
Room: 5119
Phone: 089/6004 - 3082
Fax: 089/6004 - 4136
sven-joachim.kimmerle(at)unibw.de
Office hours: by arrangement
 

Research interests:

  • Mathematical Modelling: Multibody systems coupled with elasticity, PEM fuel cells / Nanochannels / Hydrogen electrolysis, Phase transitions (Sharp-Interface models / Macroscopic equations)
  • Analysis: Coupled ODE-PDE systems, Mathematical elasticity, Free boundary problems, Homogenization of PDE / Asymptotic analysis
  • Optimization: Optimal control of PDE, Optimal control of ODE-PDE systems, Shape optimization
  • Numerics: Simulation of fully coupled ODE-PDE systems / PDE systems, Efficient simulation of large systems of differential equations, Free boundaries and contact

Lectures:

  • "Statistics" in WT 2017 (UniBw Munich)
  • "Programming" in HT 2016 (UniBw Munich)
  • Finite Elements" for "Mathematical Engineering" in WT 2013, WT 2015 (UniBw Munich), lecture & tutorials
  • „Mathematical Methods II“ for ecomic and social sciences (in English), Autumn term 2010 (U Ottawa)
  • "Calcul différentiel et intégral pour les sciences de la vie II“ in French (Calculus II for life sciences), Winter term 2010 (U Ottawa)

Teaching support and coordination (UniBw Munich listed only):

Further duties and responsabilities:

Personal information:

 

Recent publications (refereed):

Theses:

Preprints (available on request):

  • Kimmerle, S.-J.: Modelling, Simulation and Optimization of an Elastic Structure under Moving Loads, submitted.

  • Kimmerle, S.-J., Gerdts, M., Herzog, R.: Optimal Control of an Elastic Crane-Trolley-Load System - A Case Study for Optimal Control of Coupled ODE-PDE Systems. Link to extended version (updated).

  • Kimmerle, S.-J.: Well-Posedness of a Coupled Quasilinear Parabolic and Elliptic Free Boundary Problem From a Model for Precipitation in Crystalline Solids, submitted.

Further publications and technical reports (selected):