Left-Recursive Trees

grammar Tree_left_rec
nonterminal $T(1), S(0)$;
terminal edge(2);
start S ;

$$
\left.\begin{array}{lll}
\mathrm{S}() & ::=\mathrm{T}(\mathrm{x}) & {\left[\begin{array}{ll}
\mathrm{r} 1 &] \\
\mathrm{T}(\mathrm{x}) & ::=\mathrm{T}(\mathrm{x}) \text { edge }(\mathrm{x}, \mathrm{y}) \mathrm{T}(\mathrm{y})
\end{array}\right][\mathrm{r} 2]} \\
& \mid / * \text { eps } * / & {[\mathrm{r} 3}
\end{array}\right]
$$

end

State $\boldsymbol{q}_{0}(a)$

| S()$\rightarrow . \mathrm{T}(\boldsymbol{a})$ | |
| :--- | :--- | :--- |
| $\mathrm{T}(\boldsymbol{a}) \rightarrow \boldsymbol{r}$ | |
| $\mathrm{T}(\boldsymbol{a}) \rightarrow . \mathrm{T}(\boldsymbol{a})$ edge $\left(\boldsymbol{a}, n_{1}\right) \mathrm{T}\left(n_{1}\right)$ | |

$$
\xrightarrow[n_{0}=\boldsymbol{T}\left(n_{0}\right)]{a} q_{1}\left(n_{0}\right)
$$

State $\boldsymbol{q}_{1}(\boldsymbol{a})$

$$
\begin{array}{|lll|}
\hline \mathrm{T}(\boldsymbol{a}) \rightarrow \mathrm{T}(\boldsymbol{a}) \cdot \text { edge }\left(\boldsymbol{a}, n_{1}\right) \mathrm{T}\left(n_{1}\right) & \\
\mathrm{S}() \rightarrow \mathrm{T}(\boldsymbol{a}) . & {[r 1]} \\
\hline
\end{array}
$$

$$
\xrightarrow[n_{0}=\boldsymbol{a}, n_{1} \uparrow]{\operatorname{edge}\left(n_{0}, n_{1}\right)} q_{2}\left(n_{0}, n_{1}\right)
$$

State $\boldsymbol{q}_{\mathbf{2}}(\boldsymbol{a}, \boldsymbol{b})$

$\mathrm{T}(\boldsymbol{a}) \rightarrow \mathrm{T}(\boldsymbol{a})$ edge $(\boldsymbol{a}, \boldsymbol{b}) \cdot \mathrm{T}(\boldsymbol{b})$	
$\mathrm{T}(\boldsymbol{b}) \rightarrow \cdot$	$[r 3]$
$\mathrm{T}(\boldsymbol{b}) \rightarrow \cdot \mathrm{T}(\boldsymbol{b})$ edge $\left(\boldsymbol{b}, n_{1}\right) \mathrm{T}\left(n_{1}\right)$	

$$
\xrightarrow[n_{0}=\boldsymbol{b}\left(n_{0}\right)]{\longrightarrow} q_{3}\left(n_{0}, \boldsymbol{a}\right)
$$

State $\boldsymbol{q}_{3}(a, b)$

$$
\begin{array}{|ll|}
\hline \mathrm{T}(\boldsymbol{a}) \rightarrow \mathrm{T}(\boldsymbol{a}) \cdot \operatorname{edge}\left(\boldsymbol{a}, n_{1}\right) \mathrm{T}\left(n_{1}\right) \\
\mathrm{T}(\boldsymbol{b}) \rightarrow \mathrm{T}(\boldsymbol{b}) \text { edge }(\boldsymbol{b}, \boldsymbol{a}) \mathrm{T}(\boldsymbol{a}) . & {[r 2]} \\
\hline
\end{array}
$$

$$
\xrightarrow[n_{0}=\boldsymbol{a}, n_{1} \uparrow]{\text { edge }\left(n_{0}, n_{1}\right)} q_{2}\left(n_{0}, n_{1}\right)
$$

Right-Recursive Trees

```
grammar Tree_right_rec
    nonterminal \(\mathrm{T}(1), \mathrm{S}(0)\);
    terminal edge(2);
    start S ;
```



```
end
```

State $\boldsymbol{q}_{0}(a)$

| S()$\rightarrow . \mathrm{T}(\boldsymbol{a})$ | |
| :--- | :--- | :--- |
| $\mathrm{T}(\boldsymbol{a}) \rightarrow$. | $[r 3]$ |
| $\mathrm{T}(\boldsymbol{a}) \rightarrow . \operatorname{edge}\left(\boldsymbol{a}, n_{1}\right) \mathrm{T}(\boldsymbol{a}) \mathrm{T}\left(n_{1}\right)$ | |

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{a}]{\mathrm{T}\left(n_{0}\right)} q_{4}\left(n_{0}\right) \\
& \underset{n_{0}=\boldsymbol{a}, n_{1} \uparrow}{\operatorname{edge}\left(n_{0}, n_{1}\right)} q_{1}\left(n_{0}, n_{1}\right)
\end{aligned}
$$

State $\boldsymbol{q}_{1}(\boldsymbol{a}, \boldsymbol{b})$

$$
\begin{array}{|ll|}
\hline \mathrm{T}(\boldsymbol{a}) \rightarrow \text { edge }(\boldsymbol{a}, \boldsymbol{b}) \cdot \mathrm{T}(\boldsymbol{a}) \mathrm{T}(\boldsymbol{b}) & \\
\hline \mathrm{T}(\boldsymbol{a}) \rightarrow \cdot & {[r 3]} \\
\mathrm{T}(\boldsymbol{a}) \rightarrow . \operatorname{edge}\left(\boldsymbol{a}, n_{1}\right) \mathrm{T}(\boldsymbol{a}) \mathrm{T}\left(n_{1}\right) & \\
\hline
\end{array}
$$

$$
\frac{\mathrm{T}\left(n_{0}\right)}{n_{0}=\boldsymbol{a}} q_{2}\left(n_{0}, \boldsymbol{b}\right)
$$

$$
\xrightarrow[n_{0}=\boldsymbol{a}, n_{1} \uparrow]{\operatorname{edge}\left(n_{0}, n_{1}\right)} q_{1}\left(n_{0}, n_{1}\right)
$$

State $\boldsymbol{q}_{2}(\boldsymbol{a}, \boldsymbol{b})$

| $\mathrm{T}(\boldsymbol{a}) \rightarrow \operatorname{edge}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{T}(\boldsymbol{a}) \cdot \mathrm{T}(\boldsymbol{b})$ | |
| :--- | :--- | :--- |
| $\mathrm{T}(\boldsymbol{b}) \rightarrow \boldsymbol{\text { . }}$ | $[r 马]$ |
| $\mathrm{T}(\boldsymbol{b}) \rightarrow$.edge $\left(\boldsymbol{b}, n_{1}\right) \mathrm{T}(\boldsymbol{b}) \mathrm{T}\left(n_{1}\right)$ | |

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{b}]{\mathrm{T}\left(n_{0}\right)} q_{3}\left(\boldsymbol{a}, n_{0}\right) \\
& \underset{n_{0}=\boldsymbol{b}, n_{1} \uparrow}{ } q_{1}\left(n_{0}, n_{1}\right)
\end{aligned}
$$

State $\boldsymbol{q}_{3}(a, b)$
$\mathrm{T}(\boldsymbol{a}) \rightarrow \operatorname{edge}(\boldsymbol{a}, \boldsymbol{b}) \mathrm{T}(\boldsymbol{a}) \mathrm{T}(\boldsymbol{b})$. [r2]
State $\boldsymbol{q}_{4}(a)$
S()$\rightarrow \mathrm{T}(\boldsymbol{a}) . \quad[r 1]$

