## Palindromes

grammar Palindrome_full
nonterminal $\mathrm{P}(2), \mathrm{S}(0)$;
terminal $a(2), b(2)$;
start S;

S()$::=\mathrm{P}(\mathrm{x}, \mathrm{y}) \quad$ [init]
$P(x, y)::=a(x, u) a(v, y) P(u, v) \quad[a P a]$ | $b(x, u) b(v, y) P(u, v) \quad[b P b]$ | $a(x, u) a(u, y)$ [aa] b(x,u) b(u,y) [bb] | $a(x, y)$ [a] $\mid \mathrm{b}(\mathrm{x}, \mathrm{y}) \quad[\mathrm{b}]$ end

State $\boldsymbol{q}_{\mathbf{0}}(\boldsymbol{a}, \boldsymbol{b})$

| S()$\rightarrow \cdot \mathrm{P}(\boldsymbol{a}, \boldsymbol{b})$ |
| :--- | :--- |
| $\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \cdot \mathrm{a}(\boldsymbol{a}, \boldsymbol{b})$ |
| $\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \cdot \mathrm{a}\left(\boldsymbol{a}, n_{1}\right) \mathrm{a}\left(n_{1}, \boldsymbol{b}\right)$ |
| $\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \cdot \mathrm{a}\left(\boldsymbol{a}, n_{2}\right) \mathrm{a}\left(n_{3}, \boldsymbol{b}\right) \mathrm{P}\left(n_{2}, n_{3}\right)$ |
| $\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \cdot \mathrm{b}(\boldsymbol{a}, \boldsymbol{b})$ |
| $\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \cdot \mathrm{b}\left(\boldsymbol{a}, n_{4}\right) \mathrm{b}\left(n_{4}, \boldsymbol{b}\right)$ |
| $\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \cdot \mathrm{b}\left(\boldsymbol{a}, n_{5}\right) \mathrm{b}\left(n_{6}, \boldsymbol{b}\right) \mathrm{P}\left(n_{5}, n_{6}\right)$ |

$$
\begin{aligned}
& \xrightarrow[\mathrm{P}\left(n_{0}, n_{1}\right)]{n_{0}=\boldsymbol{a}, n_{1}=\boldsymbol{b}} q_{11}\left(n_{0}, n_{1}\right) \\
& \underset{\mathrm{a}\left(n_{0}, n_{1}\right)}{n_{0}=\boldsymbol{a}, n_{1}=\boldsymbol{b}} q_{3}\left(n_{0}, n_{1}\right) \\
& \underset{\mathrm{a}\left(n_{0}, n_{1}\right)}{n_{0}=\boldsymbol{a}, n_{1} \uparrow} q_{1}\left(n_{0}, \boldsymbol{b}, n_{1}, \boldsymbol{b}\right) \\
& \mathrm{b}\left(n_{0}, n_{1}\right) \\
& n_{0}=\boldsymbol{a}, n_{1}=\boldsymbol{b} \\
& \mathrm{b}\left(n_{0}, n_{1}\right)
\end{aligned} q_{2}\left(n_{0}, n_{1}\right) \text { } q_{4}\left(n_{0}, \boldsymbol{b}, n_{1}, \boldsymbol{b}\right) \text { a }
$$

State $\boldsymbol{q}_{1}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{b})$

$$
\begin{array}{|l}
\hline \mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{a}(\boldsymbol{a}, \boldsymbol{c}) \cdot \mathrm{a}(\boldsymbol{c}, \boldsymbol{b}) \\
\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{a}(\boldsymbol{a}, \boldsymbol{c}) \cdot \mathrm{a}\left(n_{1}, \boldsymbol{b}\right) \mathrm{P}\left(\boldsymbol{c}, n_{1}\right) \\
\stackrel{\mathrm{a}\left(n_{0}, n_{1}\right)}{n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{b}} q_{6}\left(\boldsymbol{a}, n_{1}, n_{0}\right) \\
\stackrel{\mathrm{a}\left(n_{0}, n_{1}\right)}{n_{0} \uparrow, n_{1}=\boldsymbol{b}} q_{5}\left(\boldsymbol{a}, n_{1}, \boldsymbol{c}, n_{0}\right)
\end{array}
$$

State $\boldsymbol{q}_{2}(a, b)$

$$
\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{b}(\boldsymbol{a}, \boldsymbol{b}) \text {. } \quad[b]
$$

State $\boldsymbol{q}_{3}(a, b)$
$\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{a}(\boldsymbol{a}, \boldsymbol{b}) . \quad[a]$
State $\boldsymbol{q}_{4}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{b})$
$\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{b}(\boldsymbol{a}, \boldsymbol{c}) \cdot \mathrm{b}\left(n_{1}, \boldsymbol{b}\right) \mathrm{P}\left(\boldsymbol{c}, n_{1}\right)$
$\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{b}(\boldsymbol{a}, \boldsymbol{c}) \cdot \mathrm{b}(\boldsymbol{c}, \boldsymbol{b})$

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{b}]{\mathrm{b}\left(n_{0}, n_{1}\right)} q_{7}\left(\boldsymbol{a}, n_{1}, n_{0}\right) \\
& \underset{n_{0} \uparrow, n_{1}=\boldsymbol{b}\left(n_{0}, n_{1}\right)}{\longrightarrow} q_{8}\left(\boldsymbol{a}, n_{1}, \boldsymbol{c}, n_{0}\right)
\end{aligned}
$$

State $q_{5}(a, b, c, d)$

| $\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{a}(\boldsymbol{a}, \boldsymbol{c}) \mathrm{a}(\boldsymbol{d}, \boldsymbol{b}) \cdot \mathrm{P}(\boldsymbol{c}, \boldsymbol{d})$ |
| :--- |
| $\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow \cdot \mathrm{a}(\boldsymbol{c}, \boldsymbol{d})$ |
| $\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow \cdot \mathrm{a}\left(\boldsymbol{c}, n_{1}\right) \mathrm{a}\left(n_{1}, \boldsymbol{d}\right)$ |
| $\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow \cdot \mathrm{a}\left(\boldsymbol{c}, n_{2}\right) \mathrm{a}\left(n_{3}, \boldsymbol{d}\right) \mathrm{P}\left(n_{2}, n_{3}\right)$ |
| $\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow \cdot \mathrm{b}(\boldsymbol{c}, \boldsymbol{d})$ |
| $\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow . \mathrm{b}\left(\boldsymbol{c}, n_{4}\right) \mathrm{b}\left(n_{4}, \boldsymbol{d}\right)$ |
| $\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow . \mathrm{b}\left(\boldsymbol{c}, n_{5}\right) \mathrm{b}\left(n_{6}, \boldsymbol{d}\right) \mathrm{P}\left(n_{5}, n_{6}\right)$ |

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}]{\mathrm{P}\left(n_{0}\right)} q_{9}\left(\boldsymbol{a}, \boldsymbol{b}, n_{0}, n_{1}\right) \\
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}]{\mathrm{a}\left(n_{0}, n_{1}\right)} q_{3}\left(n_{0}, n_{1}\right) \\
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1} \uparrow]{\mathrm{a}\left(n_{0}, n_{1}\right)} q_{1}\left(n_{0}, \boldsymbol{d}, n_{1}, \boldsymbol{d}\right) \\
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}]{\mathrm{b}\left(n_{0}, n_{1}\right)} q_{2}\left(n_{0}, n_{1}\right) \\
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1} \uparrow]{\mathrm{b}\left(n_{0}, n_{1}\right)} q_{4}\left(n_{0}, \boldsymbol{d}, n_{1}, \boldsymbol{d}\right)
\end{aligned}
$$

## State $\boldsymbol{q}_{6}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$

$$
\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{a}(\boldsymbol{a}, \boldsymbol{c}) \mathrm{a}(\boldsymbol{c}, \boldsymbol{b}) . \quad[a a]
$$

State $\boldsymbol{q}_{\boldsymbol{7}}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$
$\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{b}(\boldsymbol{a}, \boldsymbol{c}) \mathrm{b}(\boldsymbol{c}, \boldsymbol{b}) . \quad[b b]$

State $\boldsymbol{q}_{8}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})$
$\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{b}(\boldsymbol{a}, \boldsymbol{c}) \mathrm{b}(\boldsymbol{d}, \boldsymbol{b}) . \mathrm{P}(\boldsymbol{c}, \boldsymbol{d})$
$\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow . \mathrm{a}(\boldsymbol{c}, \boldsymbol{d})$
$\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow \cdot \mathrm{a}\left(\boldsymbol{c}, n_{1}\right) \mathrm{a}\left(n_{1}, \boldsymbol{d}\right)$
$\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow \mathbf{a}\left(\boldsymbol{c}, n_{2}\right) \mathrm{a}\left(n_{3}, \boldsymbol{d}\right) \mathrm{P}\left(n_{2}, n_{3}\right)$
$\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow \cdot \mathrm{b}(\boldsymbol{c}, \boldsymbol{d})$
$\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow . \mathrm{b}\left(\boldsymbol{c}, n_{4}\right) \mathrm{b}\left(n_{4}, \boldsymbol{d}\right)$
$\mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) \rightarrow . \mathrm{b}\left(\boldsymbol{c}, n_{5}\right) \mathrm{b}\left(n_{6}, \boldsymbol{d}\right) \mathrm{P}\left(n_{5}, n_{6}\right)$

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}]{ } q_{10}\left(\boldsymbol{a}, \boldsymbol{b}, n_{0}, n_{1}\right) \\
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}]{\mathrm{a}\left(n_{0}, n_{1}\right)} q_{3}\left(n_{0}, n_{1}\right) \\
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1} \uparrow]{\mathrm{a}\left(n_{0}, n_{1}\right)} q_{1}\left(n_{0}, \boldsymbol{d}, n_{1}, \boldsymbol{d}\right) \\
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1}=\boldsymbol{d}]{\mathrm{b}\left(n_{0}, n_{1}\right)} q_{2}\left(n_{0}, n_{1}\right) \\
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1} \uparrow]{\mathrm{b}\left(n_{0}, n_{1}\right)} q_{4}\left(n_{0}, \boldsymbol{d}, n_{1}, \boldsymbol{d}\right)
\end{aligned}
$$

State $\boldsymbol{q}_{9}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})$
$\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{a}(\boldsymbol{a}, \boldsymbol{c}) \mathrm{a}(\boldsymbol{d}, \boldsymbol{b}) \mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) . \quad[a P a]$

State $\boldsymbol{q}_{10}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})$
$\mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{b}(\boldsymbol{a}, \boldsymbol{c}) \mathrm{b}(\boldsymbol{d}, \boldsymbol{b}) \mathrm{P}(\boldsymbol{c}, \boldsymbol{d}) . \quad[b P b]$

State $\boldsymbol{q}_{\mathbf{1 1}}(\boldsymbol{a}, \boldsymbol{b})$
S()$\rightarrow \mathrm{P}(\boldsymbol{a}, \boldsymbol{b}) . \quad[$ init $]$

