Arithmetic Expressions

```
options
    start_node_filter = "x";
end
```

grammar Expr
nonterminal $\mathrm{E}(2), \mathrm{T}(2), \mathrm{F}(2), \mathrm{S}(0)$;
terminal plus(2), mult(2), open(2), close(2), number(2);
start S;
S()$\quad::=\mathrm{E}(\mathrm{x}, \mathrm{y})$ [init]
$\mathrm{E}(\mathrm{x}, \mathrm{y}) \quad::=\mathrm{T}(\mathrm{x}, \mathrm{y}) \quad$ [expr1]
E(x,u) plus(u,v) T(v,y)
$T(x, y) \quad::=F(x, y) \quad[$ term1]
| T(x,u) mult(u,v) F(v,y) [term2]
$F(x, y) \quad::=\operatorname{open}(x, u) E(u, v) \operatorname{close}(v, y) \quad[$ paren]
\mid number (x, y) [number]
end

State $q_{0}(a)$

S()	$\rightarrow \mathbf{E}\left(\boldsymbol{a}, n_{1}\right)$
$\mathrm{E}\left(\boldsymbol{a}, n_{2}\right) \rightarrow . \mathrm{E}\left(\boldsymbol{a}, n_{3}\right)$ plus $\left(n_{3}, n_{4}\right) \mathrm{T}\left(n_{4}, n_{2}\right)$	
$\mathrm{E}\left(\boldsymbol{a}, n_{5}\right) \rightarrow . \mathrm{T}\left(\boldsymbol{a}, n_{5}\right)$	
$\mathrm{F}\left(\boldsymbol{a}, n_{6}\right) \rightarrow \mathbf{n u m b e r}\left(\boldsymbol{a}, n_{6}\right)$	
$\mathrm{F}\left(\boldsymbol{a}, n_{7}\right) \rightarrow . \operatorname{open}\left(\boldsymbol{a}, n_{8}\right) \mathrm{E}\left(n_{8}, n_{9}\right) \operatorname{close}\left(n_{9}, n_{7}\right)$	
$\mathrm{T}\left(\boldsymbol{a}, n_{10}\right) \rightarrow . \mathrm{F}\left(\boldsymbol{a}, n_{10}\right)$	
$\mathrm{T}\left(\boldsymbol{a}, n_{11}\right) \rightarrow . \mathrm{T}\left(\boldsymbol{a}, n_{12}\right) \operatorname{mult}\left(n_{12}, n_{13}\right) \mathrm{F}\left(n_{13}, n_{11}\right)$	

$\mathrm{E}\left(n_{0}, n_{1}\right)$	$q_{7}\left(n_{0}, n_{1}\right)$
$n_{0}=\boldsymbol{a}, n_{1} \uparrow$	
$\mathrm{F}\left(n_{0}, n_{1}\right)$	$q_{3}\left(n_{0}, n_{1}\right)$
$n_{0}=\boldsymbol{a}, n_{1} \uparrow$	
$\mathrm{T}\left(n_{0}, n_{1}\right)$	$q_{4}\left(n_{0}, n_{1}\right)$
$n_{0}=\boldsymbol{a}, n_{1} \uparrow$	
number $\left(n_{0}, n_{1}\right)$	$q_{1}\left(n_{0}, n_{1}\right)$
$n_{0}=\boldsymbol{a}, n_{1} \uparrow$	
open $\left(n_{0}, n_{1}\right)$	$\left(n_{0}, n_{1}\right)$
$n_{0}=\boldsymbol{a}, n_{1} \uparrow$	

State $\boldsymbol{q}_{1}(\boldsymbol{a}, \boldsymbol{b})$
$\mathrm{F}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow$ number $(\boldsymbol{a}, \boldsymbol{b}) . \quad$ [number]

State $\boldsymbol{q}_{2}(\boldsymbol{a}, \boldsymbol{b})$

```
\(\mathrm{F}\left(\boldsymbol{a}, n_{1}\right) \rightarrow \operatorname{open}(\boldsymbol{a}, \boldsymbol{b}) \cdot \mathrm{E}\left(\boldsymbol{b}, n_{2}\right) \operatorname{close}\left(n_{2}, n_{1}\right)\)
\(\mathrm{E}\left(\boldsymbol{b}, n_{3}\right) \rightarrow \mathbf{\mathrm { E }}\left(\boldsymbol{b}, n_{4}\right)\) plus \(\left(n_{4}, n_{5}\right) \mathrm{T}\left(n_{5}, n_{3}\right)\)
\(\mathrm{E}\left(\boldsymbol{b}, n_{6}\right) \rightarrow \mathbf{T}\left(\boldsymbol{b}, n_{6}\right)\)
\(\mathrm{F}\left(\boldsymbol{b}, n_{7}\right) \rightarrow\), number \(\left(\boldsymbol{b}, n_{7}\right)\)
\(\mathrm{F}\left(\boldsymbol{b}, n_{8}\right) \rightarrow . \operatorname{open}\left(\boldsymbol{b}, n_{9}\right) \mathrm{E}\left(n_{9}, n_{10}\right) \operatorname{close}\left(n_{10}, n_{8}\right)\)
\(\mathrm{T}\left(\boldsymbol{b}, n_{11}\right) \rightarrow \mathrm{F}\left(\boldsymbol{b}, n_{11}\right)\)
\(\mathrm{T}\left(\boldsymbol{b}, n_{12}\right) \rightarrow . \mathrm{T}\left(\boldsymbol{b}, n_{13}\right) \operatorname{mult}\left(n_{13}, n_{14}\right) \mathrm{F}\left(n_{14}, n_{12}\right)\)
```

$$
\begin{aligned}
& \xrightarrow[\mathrm{E}\left(n_{0}, n_{1}\right)]{n_{0}=\boldsymbol{b}, n_{1} \uparrow} q_{8}\left(n_{0}, n_{1}, \boldsymbol{a}\right) \\
& \left.\underset{\substack{\mathrm{F}\left(n_{0}, n_{1}\right)}}{\substack{ \\
n_{0}=\boldsymbol{b}, n_{1} \uparrow \\
\mathrm{~T}\left(n_{0}, n_{1}\right) \\
\underset{n_{0}=\boldsymbol{b}, n_{1} \uparrow}{ }\left(n_{0}, n_{1}\right) \\
\text { number }\left(n_{0}, n_{1}\right) \\
\underset{n_{0}=\boldsymbol{b}, n_{1} \uparrow}{ } \\
\text { open }\left(n_{0}, n_{1}\right) \\
n_{0}=\boldsymbol{b}, n_{1} \uparrow} q_{1}\left(n_{0}, n_{1}\right)} q_{2}\left(n_{0}\right), n_{1}\right)
\end{aligned}
$$

State $\boldsymbol{q}_{3}(\boldsymbol{a}, \boldsymbol{b})$

$$
\mathrm{T}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{F}(\boldsymbol{a}, \boldsymbol{b}) \cdot[\text { term } 1]
$$

State $\boldsymbol{q}_{4}(\boldsymbol{a}, \boldsymbol{b})$

$\mathrm{E}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{T}(\boldsymbol{a}, \boldsymbol{b}) \cdot$	$[$ expr1]
$\mathrm{T}\left(\boldsymbol{a}, n_{1}\right) \rightarrow \mathrm{T}(\boldsymbol{a}, \boldsymbol{b}) \cdot \operatorname{mult}\left(\boldsymbol{b}, n_{2}\right) \mathrm{F}\left(n_{2}, n_{1}\right)$	

$$
\xrightarrow[n_{0}=\boldsymbol{b}, n_{1} \uparrow]{\operatorname{mult}\left(n_{0}, n_{1}\right)} q_{5}\left(\boldsymbol{a}, n_{0}, n_{1}\right)
$$

State $\boldsymbol{q}_{5}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$

$\mathrm{T}\left(\boldsymbol{a}, n_{1}\right) \rightarrow \mathrm{T}(\boldsymbol{a}, \boldsymbol{b}) \operatorname{mult}(\boldsymbol{b}, \boldsymbol{c}) \cdot \mathrm{F}\left(\boldsymbol{c}, n_{1}\right)$
$\mathrm{F}\left(\boldsymbol{c}, n_{2}\right) \rightarrow$. number $\left(\boldsymbol{c}, n_{2}\right)$
$\mathrm{F}\left(\boldsymbol{c}, n_{3}\right) \rightarrow . \operatorname{open}\left(\boldsymbol{c}, n_{4}\right) \mathrm{E}\left(n_{4}, n_{5}\right) \operatorname{close}\left(n_{5}, n_{3}\right)$

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{c}, n_{1} \uparrow]{\mathrm{F}\left(n_{0}, n_{1}\right)} q_{6}\left(\boldsymbol{a}, n_{1}, \boldsymbol{b}, n_{0}\right) \\
& \xrightarrow[\substack{\text { number }\left(n_{0}, n_{1}\right) \\
n_{0}=\boldsymbol{c}, n_{1} \uparrow \\
\text { open }\left(n_{0}, n_{1}\right)} q_{1}\left(n_{0}, n_{1}\right)]{n_{0}=\boldsymbol{c}, n_{1} \uparrow} q_{2}\left(n_{0}, n_{1}\right)
\end{aligned}
$$

State $\boldsymbol{q}_{\mathbf{6}}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d})$
$\mathrm{T}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \mathrm{T}(\boldsymbol{a}, \boldsymbol{c}) \operatorname{mult}(\boldsymbol{c}, \boldsymbol{d}) \mathrm{F}(\boldsymbol{d}, \boldsymbol{b}) . \quad[$ term2]
State $\boldsymbol{q}_{\boldsymbol{7}}(\boldsymbol{a}, \boldsymbol{b})$
$\mathrm{E}\left(\boldsymbol{a}, n_{1}\right) \rightarrow \mathrm{E}(\boldsymbol{a}, \boldsymbol{b}) \cdot \operatorname{plus}\left(\boldsymbol{b}, n_{2}\right) \mathrm{T}\left(n_{2}, n_{1}\right)$
S()$\quad \rightarrow \mathrm{E}(\boldsymbol{a}, \boldsymbol{b}) . \quad[$ init $]$

$$
\xrightarrow\left[n_{0}=\boldsymbol{b l u s}\left(n_{0}, n_{1} \uparrow\right]{\underset{~}{~} \uparrow} q_{9}\left(\boldsymbol{a}, n_{0}, n_{1}\right)\right.
$$

State $q_{8}(a, b, c)$

$$
\begin{array}{|l}
\mathrm{E}\left(\boldsymbol{a}, n_{1}\right) \rightarrow \mathrm{E}(\boldsymbol{a}, \boldsymbol{b}) \cdot \operatorname{plus}\left(\boldsymbol{b}, n_{2}\right) \mathrm{T}\left(n_{2}, n_{1}\right) \\
\mathrm{F}\left(\boldsymbol{c}, n_{3}\right) \rightarrow \operatorname{open}(\boldsymbol{c}, \boldsymbol{a}) \mathrm{E}(\boldsymbol{a}, \boldsymbol{b}) \cdot \operatorname{close}\left(\boldsymbol{b}, n_{3}\right) \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \xrightarrow[n_{0}=\boldsymbol{b}, n_{1} \uparrow]{\text { close }\left(n_{0}, n_{1}\right)} q_{10}\left(\boldsymbol{c}, n_{1}, \boldsymbol{a}, n_{0}\right) \\
& \underset{n_{0}=\boldsymbol{b}, n_{1} \uparrow}{\operatorname{plus}\left(n_{0}, n_{1}\right)} q_{9}\left(\boldsymbol{a}, n_{0}, n_{1}\right)
\end{aligned}
$$

State $q_{9}(a, b, c)$

$\mathrm{E}\left(\boldsymbol{a}, n_{1}\right) \rightarrow \mathrm{E}(\boldsymbol{a}, \boldsymbol{b})$ plus $(\boldsymbol{b}, \boldsymbol{c}) \cdot \mathrm{T}\left(\boldsymbol{c}, n_{1}\right)$
$\mathrm{F}\left(\boldsymbol{c}, n_{2}\right) \rightarrow \boldsymbol{\operatorname { n u m b e r }}\left(\boldsymbol{c}, n_{2}\right)$
$\mathrm{F}\left(\boldsymbol{c}, n_{3}\right) \rightarrow . \operatorname{open}\left(\boldsymbol{c}, n_{4}\right) \mathrm{E}\left(n_{4}, n_{5}\right) \operatorname{close}\left(n_{5}, n_{3}\right)$
$\mathrm{T}\left(\boldsymbol{c}, n_{6}\right) \rightarrow \mathbf{\mathrm { F }}\left(\boldsymbol{c}, n_{6}\right)$
$\mathrm{T}\left(\boldsymbol{c}, n_{7}\right) \rightarrow . \mathrm{T}\left(\boldsymbol{c}, n_{8}\right) \operatorname{mult}\left(n_{8}, n_{9}\right) \mathrm{F}\left(n_{9}, n_{7}\right)$

$$
\begin{aligned}
& \xrightarrow[\substack{n_{0}=\boldsymbol{c}, n_{1} \uparrow \\
\text { number }\left(n_{0}, n_{1}\right)}]{\xrightarrow[n_{0}=\boldsymbol{c}]{\mathrm{n}\left(n_{0}, \boldsymbol{c}, n_{1} \uparrow\right.}} q_{3}\left(n_{0}, n_{1}\right) \\
& \left.\underset{\substack{n_{0} \\
\text { open }\left(n_{0} \uparrow \\
n_{0}, n_{1}\right)}}{\mathrm{T}\left(n_{0}\right)} q_{1}\left(n_{0}, n_{1}, n_{1}\right) \boldsymbol{a}, \boldsymbol{b}\right) \\
& n_{0}=\boldsymbol{c}, n_{1} \uparrow
\end{aligned} q_{2}\left(n_{0}, n_{1}\right)
$$

State $\boldsymbol{q}_{10}(a, b, c, d)$
$\mathrm{F}(\boldsymbol{a}, \boldsymbol{b}) \rightarrow \operatorname{open}(\boldsymbol{a}, \boldsymbol{c}) \mathrm{E}(\boldsymbol{c}, \boldsymbol{d}) \operatorname{close}(\boldsymbol{d}, \boldsymbol{b})$. [paren]
State $q_{11}(a, b, c, d)$

$\mathrm{T}\left(\boldsymbol{a}, n_{1}\right) \rightarrow \mathrm{T}(\boldsymbol{a}, \boldsymbol{b}) \cdot \operatorname{mult}\left(\boldsymbol{b}, n_{2}\right) \mathrm{F}\left(n_{2}, n_{1}\right)$	
$\mathrm{E}(\boldsymbol{c}, \boldsymbol{b}) \rightarrow \mathrm{E}(\boldsymbol{c}, \boldsymbol{d}) \operatorname{plus}(\boldsymbol{d}, \boldsymbol{a}) \mathrm{T}(\boldsymbol{a}, \boldsymbol{b})$.	$[$ expr2]

$$
\xrightarrow[n_{0}=\boldsymbol{b}, n_{1} \uparrow]{\operatorname{mult}\left(n_{0}, n_{1}\right)} q_{5}\left(\boldsymbol{a}, n_{0}, n_{1}\right)
$$

